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Preface

This module is part of the series The Immunological Basis for Immunization, 
which was initially developed in 1993 as a set of eight modules focusing on the vaccines 
included in the Expanded Programme on Immunization (EPI)1. In addition to a general 
immunology module, each of the seven other modules covered one of the vaccines 
recommended as part of the EPI programme — diphtheria, measles, pertussis, polio, 
tetanus, tuberculosis and yellow fever. The modules have become some of the most 
widely used documents in the fi eld of immunization.

With the development of the Global Immunization Vision and Strategy (GIVS) 
(2005–2015) (http://www.who.int/vaccines-documents/DocsPDF05/GIVS_Final_
EN.pdf) and the expansion of immunization programmes in general, as well as the 
large accumulation of new knowledge since 1993, the decision was taken to update 
and extend this series.

The main purpose of the modules — which are published as separate disease/vaccine-
specifi c modules — is to give immunization managers and vaccination professionals a 
brief and easily-understood overview of the scientifi c basis of vaccination, and also of 
the immunological basis for the World Health Organization (WHO) recommendations 
on vaccine use that, since 1998, have been published in the Vaccine Position Papers 
(http://www.who.int/immunization/documents/positionpapers_intro/en/index.
html). 

The authors thank Dr. Felicity Cutts, the author of the prior edition of this module, 
and Dr. Simon Cousens for their contributions to our understanding of measles and 
assistance in interpreting studies of the antibody responses to measles vaccine.

WHO would like to thank all the people who were involved in the development of 
the initial Immunological Basis for Immunization series, as well as those involved in 
its updating and the development of new modules.

1 This programme was established in 1974 with the main aim of providing immunization for children 
in developing countries.
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Measles virus infection is one of the most important infectious diseases of humans 
and has caused millions of deaths since its emergence as a zoonotic infection thousands 
of years ago. Prior to the development and widespread use of measles vaccines, 
measles was estimated to cause between fi ve and eight million deaths annually. 
Remarkable progress in reducing measles incidence and mortality has been made, 
particularly in sub-Saharan Africa (1;2), as a consequence of increasing routine measles 
vaccine coverage and provision of a second opportunity for measles vaccination 
through supplementary immunization activities (SIAs) (3). In the Region of the 
Americas, intensive immunization and surveillance efforts have, since November 2002, 
stopped endemic transmission of measles virus, in part based upon the successful 
Pan American Health Organization strategy of nationwide measles vaccine campaigns 
and high routine measles vaccine coverage (4). These achievements attest to the enormous 
public-health signifi cance of measles vaccination. 

In 2003, the World Health Assembly endorsed a resolution urging member countries 
to reduce the number of deaths attributed to measles by 50% compared with 
1999 estimates by the end of 2005. This target was met. Overall, global measles 
mortality in 2005 was estimated to be 345 000 deaths (uncertainty bounds 247 000 and 
458 000 deaths), a 60% decrease from 1999 (2). The revised global goal, as stated in the 
Global Immunization Vision and Strategy 2006–2015 of the World Health Organization 
and United Nations Children’s Fund, is to reduce measles deaths 90% by 2010 compared 
to the estimated number in 2000 (5). To achieve this goal, continued progress needs to 
be made in delivering measles vaccines to the world’s children.

1.1 Measles

Clinically apparent measles begins with a prodrome characterized by fever, cough, 
coryza (runny nose), and conjunctivitis (Figure 1). Koplik’s spots, small bluish-white 
lesions on the buccal mucosa inside the mouth, may be visible during the prodrome. 
The prodromal symptoms intensify several days before the onset of rash. 
The characteristic erythematous and maculopapular rash typically appears fi rst on 
the face and behind the ears, and then spreads in a centrifugal fashion to the trunk 
and extremities. The rash lasts for three to four days and fades in the same manner as 
it appeared. Some children, particularly those who are malnourished, may develop a 
deeply pigmented rash that desquamates or peels during recovery. Because the rash 
of measles is a consequence of the cellular immune response, persons with impaired 
cellular immunity, such as those with the acquired immunodefi ciency syndrome (AIDS), 
may not develop the characteristic measles rash. 

1. The organism 
and disease
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Figure 1: Pathogenesis of measles virus infection 

Source:
Griffi n DE. In: Knipe DM et al, eds. Fields Virology, 4th ed. Lippincott Williams & Wilkins, 2001:1401–1441.
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In uncomplicated measles, clinical recovery begins soon after appearance of the rash. 
Complications occur in 10%–40% of measles cases and the risk is increased by extremes 
of age, malnutrition, and other causes of impaired immunity (6;7). Complications of 
measles have been described in almost every organ system. The respiratory tract is a 
frequent site of complication, with pneumonia accounting for most measles-associated 
deaths (8). Pneumonia is caused by secondary viral or bacterial infections, or by measles 
virus itself. Other respiratory complications include laryngotracheobronchitis (croup), 
and more commonly, otitis media (ear infection). Mouth ulcers, or stomatitis, may hinder 
children with measles from eating or drinking. Many children with measles develop 
diarrhoea, which further contributes to malnutrition. Eye disease (keratoconjunctivitis) 
may occur after measles, particularly in children with vitamin-A defi ciency, and can 
result in blindness.

Rare but serious complications of measles involve the central nervous system. 
Post-measles encephalomyelitis complicates approximately one in 1000 measles cases, 
mainly in older children and adults. Other rare central nervous system complications 
occurring months to years after acute infection are measles inclusion body encephalitis 
(MIBE) and subacute sclerosing panencephalitis (SSPE). Children with malnutrition, 
particularly vitamin-A defi ciency, and those with severe immunological defi cits such 
as advanced human immunodefi ciency virus (HIV-1) infection, are at increased risk of 
severe or fatal measles. In resource-poor countries where malnutrition and exposure to 
other infectious diseases is common, the case-fatality ratio for measles is usually 3% to 
6%, but can be as high as 30% in refugee camps or in isolated, immunologically naive 
populations (2;9). However deaths due to measles are rare in developed countries, 
where the case fatality ratio is 0.01% to 0.1%.

The characteristic clinical features are of suffi cient sensitivity and specifi city to have 
high predictive value for the diagnosis of measles in regions where measles virus is 
endemic. However, laboratory diagnosis is necessary where measles virus transmission 
rates are low, in immunocompromised persons who may not have the characteristic 
clinical manifestations, and as part of measles surveillance. Other infections, such as 
with rubella virus, parvovirus B19 (erythema infectiosum or Fifth disease), 
human herpes viruses 6 and 7 (roseola infantum), dengue virus and Streptococcus pyogenes 
(scarlet fever), may mimic measles. Detection of IgM antibodies to measles virus by 
a capture enzyme immunoassay (EIA) is the standard method of diagnosing acute 
measles, as described below (10;11). 
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1.2 Measles virus

Measles virus is the causative agent of measles and was first isolated from the 
blood of infected persons in the 1950s by John Enders and Thomas Peebles (12). 
The development of vaccines against measles soon followed. Measles virus is one of 
the most infectious directly-transmitted pathogens known, and occurs naturally only 
in humans. Measles virus is a spherical, nonsegmented, single-stranded, negative-sense, 
enveloped ribonucleic acid (RNA) virus and a member of the Morbillivirus genus in the 
family of Paramyxoviridae. Other members of the Morbillivirus genus, although not 
pathogenic to humans, are rinderpest virus and canine distemper virus. Rinderpest virus 
causes an important disease of cattle and swine, and is the Morbillivirus most closely 
related to measles virus. Although RNA viruses have high mutation rates, measles virus 
is considered to be an antigenically monotypic virus, meaning that the surface proteins 
responsible for inducing protective immunity have retained their antigenic structure 
over decades and throughout the world. The public-health signifi cance is that measles 
vaccines developed decades ago from a single measles virus strain remain protective 
worldwide. However, genetic sequencing has identifi ed 23 different measles virus 
genotypes, allowing for molecular epidemiological studies of measles virus transmission 
(13). Measles virus is killed by ultraviolet light and heat, and attenuated measles vaccine 
viruses retain this sensitivity necessitating a cold chain for transporting and storing 
measles vaccines, particularly after reconstitution.

The measles virus genome encodes eight proteins. In terms of understanding the 
immunological basis of measles immunization, the two surface proteins of measles 
virus, the haemagglutinin (H) and fusion (F) proteins, are most important. The primary 
function of the H protein is to bind to host cellular receptors, whereas the F protein 
mediates uptake into the host cell. The H protein elicits strong host immune responses, 
and the life-long immunity that follows infection is attributed to neutralizing antibodies 
against H (14).

Respiratory droplets from infected persons serve as vehicles of transmission by 
carrying infectious virus to epithelial cells of the respiratory tract of susceptible hosts. 
During the 10 to 14 day incubation period between infection and the onset of clinical 
signs and symptoms, measles virus replicates and spreads within the infected host 
(Figure 1). Initial viral replication typically occurs in epithelial cells at the portal of 
entry in the upper respiratory tract, and the virus then spreads to local lymphatic 
tissue. Replication in local lymph nodes is followed by viremia (the presence of virus 
in the blood) and the dissemination of measles virus to many organs, including lymph 
nodes, skin, kidney, gastrointestinal tract and liver, where the virus replicates in 
epithelial and endothelial cells as well as monocytes, macrophages and lymphocytes. 
Infected persons are usually contagious from 2–3 days before and up to four days after 
onset of the rash. 
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1.3 Measles vaccines

1.3.1 Vaccine strains
Attenuation of wild-type measles virus for the production of measles vaccines is achieved 
by serial passage in cultured cells. The fi rst licensed attenuated measles vaccine was 
called Edmonston B (Figure 2). This vaccine was immunogenic and was widely used 
between 1963 and 1975, but was frequently associated with fever and rash. The Schwarz 
and Moraten (“more attenuated”) strains were derived from the original Edmonston 
strain but further attenuated through additional passages in chick embryo fi broblasts. 
Despite differences in their passage history, these two vaccine strains have identical 
genomic sequences (15). The Moraten vaccine is widely used in the United States of 
America, whereas the Schwarz vaccine is used in many countries throughout the world. 
The Edmonston-Zagreb vaccine, similarly derived from the Edmonston B strain, 
is the most widely used strain in developing countries and was passaged in human 
diploid cells after attenuation in chick embryo fi broblasts. Other attenuated measles 
vaccines have been produced from locally derived wild-type strains, particularly in the 
Russian Federation (Leningrad-16), the People’s Republic of China (Shanghai-191) and 
Japan (CAM-70, AIK-C). 

Figure 2: Measles virus vaccines
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Several attenuated measles vaccines are available in combination with other 
antigens, such as rubella and mumps vaccines (MR and MMR), and varicella vaccine. 
Licensed combination vaccines do not reduce the immunogenicity of the measles 
vaccine component. Measles vaccines are usually injected subcutaneously but can 
be administered intramuscularly. Measles vaccines may contain sorbitol or gelatin as 
stabilizers and the antibiotic neomycin, but do not contain thimerosal. The vaccine 
must be reconstituted in sterile diluent prior to use. 

1.3.2 Vaccine potency and stability
The potency of measles vaccines can be determined by measurement of plaque-
forming units (PFU) or tissue culture infective doses (TCID50). An International 
Reference Reagent is available to standardize reporting of potency measurements. 
The World Health Organization recommends a minimum potency for measles vaccine 
of 1000 viral infective units (3.0 log10 TCID50) (16). Vaccines with potencies between 
3.0 and 4.6 log10 are considered to be standard-titre vaccines, and vaccines with potencies 
above 4.7 log10 are defi ned as high-titre vaccines (17). 

Measles vaccines are relatively heat-stable in the lyophilized form, but rapidly lose 
potency when exposed to heat after reconstitution. The development of effective 
stabilizers and the formulation of the World Health Organization requirement for 
heat stability for freeze-dried measles vaccine considerably improved the quality of 
measles vaccines. In the freeze-dried state, measles vaccines that meet World Health 
Organization requirements retain a minimum potency of at least 3.0 log10 live virus 
particles per human dose after exposure to a temperature of 37°C for at least one 
week (16). However, reconstituted measles vaccines may lose their potency at room 
temperatures. Although the stability depends in part upon the particular vaccine 
strain, reconstituted measles vaccines may lose approximately 50% of potency in 
one hour at 22°C to 25°C, and are inactivated within one hour at temperatures over 
37°C. Reconstituted measles vaccines must therefore be kept cool and protected from 
sunlight.
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Host immune responses to measles virus are essential for viral clearance, 
clinical recovery, and the establishment of long-term protective immunity. 

2.1 Innate immune responses 

The early nonspecifi c (innate) immune responses that occur during the prodromal phase 
of the illness include activation of natural killer (NK) cells, and increased production 
of the antiviral proteins interferon (IFN)-α and IFN-γ. IFN induction by wild-type 
measles virus strains is generally less effi cient than by vaccine strains. These innate 
immune responses contribute to the control of measles virus replication before the 
onset of more specifi c (adaptive) immune responses. 

2.2 Antibody responses

The adaptive immune responses consist of measles virus-specific antibody and 
cellular immune responses (Figure 1). The protective efficacy of antibodies to 
measles virus is illustrated by the protection conferred to infants from passively-
acquired maternal antibodies and the protection of exposed, susceptible individuals 
following administration of anti-measles virus immune globulin (18). The fi rst measles 
virus-specifi c antibodies produced after infection are of the IgM subtype, generally 
followed by a switch to predominantly IgG1 and IgG4 isotypes (19). The IgM 
antibody response usually is absent following re-exposure or revaccination, and 
serves as a marker of primary infection. IgA antibodies to measles virus are found in 
mucosal secretions. The most abundant and most rapidly produced antibodies are 
against the nucleoprotein (N), and the absence of antibodies to N is the most accurate 
indicator of the lack of antibodies to measles virus. Although not as abundant, antibodies to 
H and F proteins contribute to virus neutralization and are the best correlates of 
protection against measles virus infection. Avidity is an important characteristic of 
a mature antibody response and refers to how tightly the antibody binds measles 
virus antigens. The development of a high avidity antibody response is critical to the 
development of protective immunity to measles virus. Antibody avidity to measles 
virus is generally lower in children vaccinated at six or nine months of age compared 
with children vaccinated at 12 months of age (20). 

2. Immunological responses 
to natural infection
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2.3 Cellular immune responses

Evidence of the importance of cellular immune responses to measles virus is 
demonstrated by the ability of children with agammaglobulinemia (congenital 
inability to produce antibodies) to fully recover from measles, whereas children with 
severe defects in T-lymphocyte function often develop severe or fatal disease (21). 

Monkeys provide an animal model to study the immune responses to measles virus 
and measles vaccines, and monkeys depleted of CD8+ T lymphocytes and challenged 
with wild-type measles virus had a more extensive rash, higher measles virus loads, 
and longer duration of viremia than control animals, further confi rming the importance 
of cellular immunity to measles virus clearance (22).

CD4+ T lymphocytes are also activated in response to measles virus infection and 
secrete cytokines capable of modulating the humoral and cellular immune responses 
(Figure 1). Plasma cytokine profi les show increased levels of IFN-γ during the acute 
phase, followed by a shift to high levels of interleukin (IL)-4 and IL-10 during 
convalescence (23). The initial predominant type 1 response (characterized by IFN-γ) 
is essential for viral clearance, and the later type 2 response (characterized by IL-4) 
promotes the development of measles virus-specifi c antibodies (24). 

2.4 Immunological memory

The duration of protective immunity following wild-type measles virus infection is 
generally thought to be life-long. Observations by Peter Panum during the measles 
epidemic on the isolated Faroe Islands in 1846, demonstrated the long-term protective 
immunity conferred by wild-type measles virus infection (25). Two measles epidemics 
occurred in this community decades apart. Adults with a history of measles as children 
did not acquire measles after re-exposure 65 years later. The mechanisms involved 
in sustaining protective immunity to measles virus are not completely understood, 
but general principles of the development and maintenance of immunological memory 
probably govern this process. There is no evidence that repeat exposure to measles 
virus is required for long-term immunity, although studies in the Republic of Senegal 
suggested that subclinical boosting of antibody levels may result from frequent 
exposure in regions where measles virus is circulating (26). Immunological memory to 
measles virus includes both continued production of measles virus-specifi c antibodies 
and the circulation of measles virus-specifi c CD4+ and CD8+ T lymphocytes (27). 
Although levels of anti-measles virus antibodies may diminish over time, the ability 
to rapidly mount secondary humoral and cellular immune responses is important in 
providing protection from infection. 

2.5 Immune suppression

The intense immune responses induced by measles virus infection are paradoxically 
associated with depressed responses to unrelated (non-measles virus) antigens, 
lasting for several weeks to months beyond resolution of the acute illness. This state of 
immune suppression enhances susceptibility to secondary bacterial and viral infections 
causing pneumonia and diarrhoea, and is responsible for much measles-related 
morbidity and mortality (28;29). Delayed-type hypersensitivity (DTH) responses to 
recall antigens, such as tuberculin, are suppressed and cellular and humoral responses 
to new antigens are impaired, following measles virus infection (30). Reactivation of 
tuberculosis and remission of autoimmune diseases have been described after measles 
and are attributed to this state of immune suppression.
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Abnormalities of both the innate and adaptive immune responses follow measles 
virus infection. Transient lymphopenia (a reduction in the number of lymphocytes 
in the blood) with a reduction in both CD4+ and CD8+ T lymphocytes, occurs in 
children following measles virus infection, although this may refl ect redistribution of 
lymphocytes to lymphoid tissue in addition to cell death (31). Functional abnormalities 
of immune cells are also detected, including decreased lymphocyte proliferative responses 
(32). Dendritic cells, major antigen-presenting cells, mature poorly, lose the ability to 
stimulate proliferative responses in lymphocytes, and undergo cell death when infected 
with measles virus in vitro (33). The dominant type 2 response in children recovering 
from measles can inhibit type 1 responses and increase susceptibility to intracellular 
pathogens (34;35). The production of IL-12, important for the generation of type1 
immune responses, decreases following binding of the CD46 receptor for measles virus 
(36) and is low for several weeks in children with measles (37). This diminished ability 
to produce IL-12 could result in limited type 1 immune responses to other pathogens. 
A role for immunomodulatory cytokines in the immune suppression following measles 
is supported by evidence of elevated plasma levels of IL-10 in children with measles, 
a cytokine capable of inhibiting immune responses (23).
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3.1 Antibody and cellular immune responses

Measles vaccines induce humoral and cellular immune responses similar to natural 
measles virus infection. Antibodies fi rst appear between 12 and 15 days after vaccination 
and typically peak at 21 to 28 days. IgM antibodies appear transiently in blood, 
IgA antibodies are predominant in mucosal secretions, and IgG antibodies persist 
in blood for years. Vaccination also induces measles virus-specific CD4+ and 
CD8+ T-lymphocytes (27;38). Although both humoral and cellular responses can 
be induced by measles vaccines, these responses are of lower magnitude and shorter 
duration compared to those following wild-type measles virus infection (39). 

The proportion of children who develop protective antibody levels following 
measles vaccination depends on the presence of inhibitory maternal antibodies and 
the immunologic maturity of the vaccine recipient, as well as the dose and strain 
of vaccine virus (Figure 3, Table 1). Frequently cited fi gures are that approximately 
85% of children develop protective antibody levels when given one dose of measles 
vaccine at nine months of age, and 90% to 95% respond when vaccinated at 12 months 
of age (17). Among the 44 studies listed in Table 1 in which children were vaccinated 
between 8 and 9 months of age, the median proportion of children responding was 
89.6% (mean 86.7; minimum 56; maximum 100; interquartile range (IQR) 82, 
95). Among the 24 studies listed in Table 1 in which children were vaccinated 
between 9 and 10 months of age, the median proportion of children responding was 
92.2% (mean 88.2; minimum 59; maximum 100; IQR 84, 96). Among the 21 studies 
listed in Table 1 in which children were vaccinated between 11 and 12 months of age, 
the median proportion of children responding was 99% (mean 95.7; minimum 80; 
maximum 100; IQR 93, 100).

3. Immunological responses 
to immunization
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Figure 3: Box plots showing the proportion of children 
who respond to standard-titre measles vaccine by age at vaccination

Adapted, by permission of the publisher, from Scott S, [thesis] 2006, (237).
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3.2 Immune responses to revaccination

The immunological basis for providing a second opportunity for measles vaccination is 
to immunize those children who fail to respond to the fi rst dose, as well as to vaccinate 
those who never received a dose. Immune responses to revaccination depend in part 
on the adequacy of the response to the fi rst dose of measles vaccine. Those with poor 
immune responses to initial vaccination usually have a characteristic primary immune 
response, with production of IgM antibodies followed by high levels of IgG antibodies. 
When a second dose is administered to children over one year of age who failed to 
develop protective antibody levels following the fi rst dose, the majority will develop 
protective antibody levels (Table 2). For example, among 679 children four to six years 
of age who received a single dose of measles vaccine between 12 and 17 months of age, 
97% of the 37 seronegative children seroconverted after revaccination (40). In another 
study of children in the United States, 82% of 130 seronegative children seroconverted 
after revaccination after a single dose of measles vaccine (41). 
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An increase in IgG antibody levels, or boosting, can be seen in persons with moderate 
levels of protective immunity after the fi rst dose of measles vaccine (42;43). In these 
individuals, an anamnestic immune response develops, IgM antibodies typically are 
not produced, and IgG antibodies are detected within fi ve to six days and peak around 
12 days. Antibody levels after revaccination tend to return to pre-vaccination levels 
within several months to years (Table 2), although cell-mediated immune responses after 
revaccination may persist (39). In persons with high levels of pre-existing antibodies 
to measles virus, vaccine virus does not replicate suffi ciently to boost antibody 
levels. Children who were revaccinated were at lower risk of acquiring measles in 
Finland (44) and Zimbabwe (45). 

3.3 Determinants of the immune responses to immunization

3.3.1 Host factors
3.3.1.1 Age at vaccination

The age at vaccination is an important determinant of the immune response to 
measles vaccine, with older infants having better responses than younger infants. 
The optimal age for measles vaccination is determined by consideration of the 
age-dependent increase in seroconversion rates following measles vaccination and the 
average age of infection. In regions of intense measles virus transmission, the average 
age of infection is low and the optimal strategy is to vaccinate against measles as young 
as possible (usually nine months of age — see below). By contrast, in settings where 
measles virus transmission has been reduced, the age of routine measles vaccination 
can be increased to 12 months or older. Antibody responses to measles vaccine 
increase with age up to approximately 15 months, due to the presence of inhibitory 
maternal antibodies and immaturity of the immune system (Figure 3). This immaturity 
of the immune system in neonates and young infants includes a limited B-cell 
repertoire and ineffi cient mechanisms of antigen presentation and T-cell help (46;47). 
The recommended age at vaccination must balance the risk of primary vaccine failure, 
which decreases with age, against the risk of measles virus infection prior to vaccination, 
which increases with increasing age. 

In communities with intense measles virus transmission, a signifi cant proportion of 
children may acquire measles before nine months of age. For example, in Lusaka, 
in the Republic of Zambia, one quarter of HIV-uninfected and one third of 
HIV-infected children hospitalized with measles were younger than nine months old 
(48). Under some circumstances, provision of an extra, early dose of measles vaccine 
at six months (e.g. in outbreaks or for HIV-infected children) is appropriate. 
Additional doses of measles vaccine should be administered to these children, 
according to the routine immunization schedule. 
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3.3.1.2 Passively-acquired maternal antibodies

Young infants in the fi rst months of life are protected against measles by passively-
acquired maternal IgG antibodies. An active transport mechanism in the placenta is 
responsible for the transfer of IgG antibodies from the maternal circulation to the 
fetus, starting at approximately 28 weeks gestation and continuing until birth (47). 
Three factors determine the degree and duration of protection in the newborn: (1) the 
level of maternal antibodies to measles virus; (2) the effi ciency of placental transfer; 
(3) the rate of catabolism in the child (49). Although protective, maternally-acquired 
antibodies also interfere with the immune responses to the attenuated measles vaccine 
by inhibiting replication of vaccine virus necessary for a robust immune response to the 
vaccine. In general, maternally-acquired antibodies are no longer present in the majority 
of children by six to nine months of age (49). The half-life of antibodies to measles virus 
is the time required for one half of the amount of antibody to decay, and estimates of 
this half-life are remarkably consistent across studies (Table 3). Estimates vary between 
40 and 61 days, and there do not seem to be regional differences in decay rates.

Table 3:  Half-life of maternally-acquired antibodies to measles virus

Country (reference) Number of 
children

Estimated half-life for 
maternal antibodies 

(days)
Test

USA (49;204-206) a 42 48.4 HI

Kenya (205;207) a 35–116 46.1 HI

China (Province of Taiwan) (205;206) a 14–88 53.3 HI

Jamaica (208) 155
155

60.8a

43.5b

HI
PRNT

Jamaica (206) 173 44.3 PRNT

Ghana (206) 35 39.7 PRNT

Canada (209) c

 Group 1 
 Group 2
 Group 3

164
60
54

40
64
52

PRNT

Peru (165) d

 Low birth weight
 Medium weight 
 High birth weight

34
15
9

10

56.3 (± SE)
61 ± 13
59 ± 15
46 ± 16

EIA

Nigeria (210) 206 48 EIA

a Studies that specify that seronegative children were excluded in half-life estimates.
b Decline of median titres, with seronegative children included in the estimation.
c Group1; mothers born before 1958, Group 2; mothers born >1964 and received killed measles 

vaccine followed by live attenuated measles vaccine, Group 3; 
mothers born >1964 and received live attenuated measles vaccine.  

d High titres >3000, medium titres 2000–3000 and low titres 1000–2000. 
SE   =  standard error for each group
HI   =  haemagglutination inhibition assay
PRN =  plaque reduction neutralization test
ELISA =  enzyme linked immunosorbent assay
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Women with vaccine-induced immunity tend to have lower anti-measles virus 
antibody levels than women with naturally-acquired immunity, and their children 
may be susceptible to measles at an earlier age. Lower levels of measles antibodies in 
vaccinated individuals may result not only from the direct effects of vaccination but 
because successful vaccination programmes reduce measles virus transmission and thus 
boosting of immunity through exposure to wild-type measles virus. 

Placental transfer of maternal antibodies, including antibody to measles virus, 
is impaired in HIV-1-infected women (50;51). Children born to HIV-1-infected women 
may be susceptible to measles virus infection earlier than children born to uninfected 
women. In the Republic of Kenya, 9% of 109 children born to HIV-1-infected women 
acquired measles before nine months of age, compared with 3% of 194 children born 
to uninfected women (52). However, the lower levels of maternal antibody may also 
result in a better response of their HIV-1-infected and uninfected infants to measles 
vaccine administered at six months of age. 

Malaria, particularly infection with Plasmodium falciparum, can cause pathological 
changes in the placenta, including thickening of the basement membrane and 
infl ammation, which can impair the transplacental transfer of maternal antibodies. 
Studies in the Republics of the Gambia and Malawi reported reduced placental transfer 
of antibodies to measles virus in the presence of placental malaria infection (53;54). 

3.3.1.3 Immunological immaturity

Very young infants (six months or younger) do not develop high levels of neutralizing 
antibodies after immunization with attenuated measles virus vaccines, even in the 
absence of passively-acquired maternal antibodies. Neonates have impaired antibody 
responses to many antigens. The magnitude of the IgG antibody response is lower 
than in adults and antibody avidity is decreased (55). Ineffi cient immune responses in 
neonates may be due to impaired interactions between T-lymphocytes and antigen-
presenting cells. Specifi cally, neonatal immunologic immaturity may result from failure 
of neonatal follicular dendritic cells (FDC) to respond to lymphoid-mediated signals, 
with subsequent failure in maturation of FDC and formation of germinal centres 
(56). 

3.3.1.4 HIV-1 infection and other immunosuppressive conditions

The antibody response to measles vaccine can be impaired in HIV-1-infected children 
(Figure 4, Tables 4 and 5) (57). In three prospective studies conducted early in the 
HIV-1 epidemic in the United States, only approximately one-quarter to one-third of 
HIV-1-infected children responded to a single dose of standard-titre measles vaccine 
(57). In a study of HIV-seropositive children in the Democratic Republic of the Congo, 
65% had protective levels of measles antibody three months after measles vaccination 
at nine months of age, although only 36% of 11 symptomatic children seroconverted 
compared with 77% of 26 asymptomatic children (58). In Malawi, the proportion 
of measles seropositive children (by EIA) following two doses of measles vaccine at 
6 and 9 months of age was only 64% for 45 HIV-infected children, compared with 
94% of 202 HIV-exposed but uninfected children and 92% of 417 HIV-unexposed 
children (Felicity Cutts, personal communication). By contrast, 88% of 50 HIV-
1-infected Zambian children developed protective antibody levels (by plaque 
reduction neutralization assay) within six months of vaccination compared to 
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94% of 98 HIV-seronegative children and 94% of 211 HIV-seropositive but uninfected 
children (P = 0.3) (59). By 27 months after vaccination, however, only half of the 
18 HIV-1-infected children who survived and returned for follow-up maintained 
protective measles antibody levels compared with 89% of 71 uninfected children 
(P = 0.001) (59). Studies in the United States also found that HIV-1-infected children 
have a more rapid decline in measles antibody levels compared with HIV-1-uninfected 
children (60), with a median time to loss of EIA–detectable antibody of 30 months in 
one study of 17 HIV-1-infected children (61). However, the majority of HIV-1-infected 
adults who were vaccinated as children remain seropositive (62;63). 

Figure 4: Proportion of children who responded to measles vaccine by HIV 
infection status in cross-sectional studies
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First authors are shown on the x-axis (see Table 4 for details).  
Vertical bars show 95% confi dence intervals.
Adapted, by permission of the publisher, from Scott S, [thesis] 2006, (237).

The response of HIV-1-infected children to a second dose of vaccine in fi ve studies was 
variable, but generally poor (Table 5) (57). However, in the study of Zambian children 
cited above, 92% of 12 HIV-1-infected children revaccinated during a supplemental 
measles immunization activity had protective measles antibody levels (59), although the 
time between revaccination and testing was shorter than in many previous studies. 
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Immune restoration follows effective highly active antiretroviral therapy (HAART) 
in many HIV-1-infected children, and can improve the response to revaccination 
against measles (64). Repeat vaccination with MMR vaccine was more likely to 
result in an antibody responses in children receiving HAART than in children 
receiving non-HAART antiretroviral regimens (65). Deferring vaccination in HIV-
1-infected children with advanced immunosuppression until HIV-1 replication is 
controlled by HAART could result in improved responses to vaccination, and should 
be considered if they are not at immediate risk of contracting measles. 
However, antibody responses may wane even in HIV-1-infected children receiving 
effective HAART (66). Only 73% of 11 children receiving HAART who responded to 
MMR after reimmunization had measurable antibody levels to measles virus one year 
later (67). 

3.3.1.5 Concurrent acute infections 

Although probably uncommon, concurrent acute infections may interfere with the 
immune response to measles vaccine, but mild illnesses are not a contraindication 
to measles vaccination (68). Several small studies suggested that illness at the 
time of measles vaccination, particularly upper-respiratory tract infections, 
interfered with the protective antibody response to measles vaccination (69-71). 
However, the majority of studies found that minor illnesses do not interfere with 
seroconversion following measles vaccination (68;72-75), including studies conducted in the 
Republic of Haiti (76) and the Rwandese Republic (77) as well as in more developed countries. 
Neither malaria (78;79) nor malaria chemoprophylaxis (80-82) impair the immune 
response to measles vaccine, although investigators in the Republic of Gambia speculated 
that repeated malaria infections may be responsible for waning immunity to measles 
virus 5–7 years after vaccination (83). 

3.3.1.6 Nutritional status

Most published studies have found that malnourished children have equivalent 
seroconversion rates after measles vaccination compared to children who are 
well-nourished (76;84-87). In one exception, stunting was found to be signifi cantly 
associated with low antibody levels to measles virus among Ugandan children 
(OR 1.8, P = 0.04) (88). Although investigators in the Republic of Indonesia found 
a lower rate of seroconversion among children vaccinated at six months of age 
who received vitamin-A supplements compared to children who did not (89), 
subsequent trials have found similar or higher rates of seroconversion among children 
receiving vitamin-A supplements (90-93). These studies support the World Health 
Organization policy of administering vitamin-A supplements at the time of measles 
vaccination (94). 

3.3.1.7 Host genetics

Host genetic background affects the likelihood of seroconversion, antibody levels and 
cellular immune responses following measles vaccination. Polymorphisms in human 
immune response genes infl uence immune responses to measles vaccine, including 
class I and class II human leukocyte antigen (HLA) types and non-HLA alleles (95). 
Single-nucleotide polymorphisms (SNPs) in cytokine and cytokine receptor genes 
(96), as well as SNPs in the measles virus receptors (SLAM and CD46) (97), have also 
been associated with differences in antibody and cellular immune responses to measles 
vaccine. However, in general, most people develop protective antibody levels after a 
second dose of measles vaccine, regardless of genetic background.
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3.3.1.8 Sex

Several studies reported intriguing sex differences in the immunogenicity (90;98;99) and 
reactogenicity (100) of measles vaccine, with higher post-vaccination antibody levels 
and rates of fever and rash in girls. Interest in sex differences in response to measles 
vaccine was stimulated by reports of increased mortality in girls following receipt of 
the high-titre measles vaccine (see below — Adverse events associated with high-titre 
measles vaccines). However, sex differences in seroconversion rates were not reported 
in the majority of studies on the immunogenicity of standard-titre measles vaccine. 
The immunological basis for any sex differences in the responses to measles vaccines 
is not known.

3.3.2 Vaccine characteristics
In general, the currently used live, attenuated measles vaccines are effective in 
inducing protective immunity. At nine months of age, the proportion of children 
who respond to measles vaccination does not differ substantially between vaccine 
strains. However, at six months of age, a higher proportion of children respond to the 
Edmonston-Zagreb vaccine than to the Schwarz vaccine strain (17;101).

3.4 Measurement of protection after immunization

3.4.1 Measures of protection
Protection against measles following vaccination can be measured in several different 
ways. Vaccine effi cacy is a measure of the proportion of children who are protected 
against clinically apparent disease. Measles vaccine effi cacy under study conditions 
(e.g. in clinical trials), or effectiveness under fi eld conditions, is measured as one 
minus a measure of the relative risk of measles in the vaccinated group compared to 
the unvaccinated group. Because of the large number of children and long duration of 
follow-up required to measure measles vaccine effi cacy in clinical trials, immunological 
markers of protective immunity are more commonly used to assess measles vaccines. 

There are several immunological assays used to measure antibodies to measles virus, 
not all of which measure functional or protective antibodies. Measurement of 
antibodies to measles virus by the plaque reduction neutralization assay is best 
correlated with protection from infection and remains the gold standard for measuring 
protective antibody levels. This assay provides a quantitative measurement of the 
level of neutralizing antibodies. However, the assay is expensive and labour-intensive. 
The protective level of measles neutralizing antibody is estimated to be 200 mIU/mL 
when based on the First International Reference serum, and 120 mIU/mL when based 
on the Second International Reference serum (102). The WHO Expert Committee on 
Biological Standardization recently endorsed the use of the 3rd International Standard 
for measles antibody and assigned a concentration of 3 IU per ampoule, compared with 
5 IU per ampoule for the 2nd International Standard (103).

When using the 3rd International Standard Reference serum the level of measles 
neutralizing antibody that corresponds with clinical protection is >120 mIU/mL.
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Enzyme linked immunosorbent assays (EIA or ELISA) are the most widely used tests 
to measure measles IgM and IgG antibodies because results can be obtained quickly 
using commercially-manufactured kits. They also require a small volume of serum 
or plasma, and are less labour-intensive than the plaque-reduction neutralization 
assays. Most IgM EIA assays used to diagnose acute measles have a high sensitivity 
(83%–89%) and specifi city (95%–100%) using samples collected 3–28 days after 
onset of the rash (10). However, much of the IgG antibody detected using 
commercially-manufactured EIA kits are non-protective antibodies to the nucleoprotein 
(N), and the EIA are less sensitive than plaque-reduction neutralization tests at low 
antibody levels (104). A comparative study of two commercial measles IgG EIA assays 
with plaque-reduction neutralization tests found the EIA assays to have a sensitivity of 
90% and specifi city of 100%, with false negative EIA results most common in sera with 
low levels of neutralizing antibodies (105). Due to the variable sensitivity of IgG EIAs it 
is recommended that all seroepidemiological assessments include a standard calibrating 
serum. Comparison of results between EIA assays are problematic due to different 
sources and concentrations of antigens, and thresholds for determining protective 
antibody levels have not been standardized (101). Although no longer commonly used, 
haemagglutination inhibition (HI) assays measure the ability of cross-reacting antibodies 
to measles virus to block agglutination of monkey red-blood cells. 

3.4.2 Duration of protective immunity
The duration of immunity following measles vaccination is more variable and 
shorter than following wild-type measles virus infection, but persists for decades. 
Even in countries where measles is no longer endemic, antibodies to measles virus persist 
for years (Table 6, Figure 5) (106-108). In countries where measles remains endemic, 
or in early studies where measles vaccine coverage rates were low, immune responses 
may be boosted by re-exposure to wild-type measles virus (26). The antibody levels 
induced by vaccination decline over time and may become undetectable. Nevertheless, 
immunological memory persists and, following exposure to measles virus, 
most vaccinated persons produce a measles virus-specifi c immune response without 
clinical symptoms. 
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Figure 5: Measles antibody response and persistence following 
immunization with Schwarz vaccine

3.5 Unintended immunological consequences of measles vaccination

3.5.1 Adverse events associated with live attenuated measles vaccines
Adverse events following measles vaccination are generally mild and transient, and result 
from host immune responses to replicating vaccine virus. Mild pain and tenderness 
may occur at the site of injection. Fever of at least 39.4 oC occurs in approximately 
5% of recipients 7–12 days following measles vaccination, and a transient rash occurs 
in approximately 2% of recipients (16). These signs and symptoms are a consequence 
of the host immune response to replicating measles vaccine virus, but do not result in 
serious morbidity or mortality. Rarely, thrombocytopenia (low number of platelets) 
may occur (109), similar to the transient idiopathic thrombocytopenic purpura that 
follows acute infections. These adverse events are less likely to occur following a second 
dose of measles vaccine. 

Allergic reactions to vaccine components, including neomycin and the stabilizers 
gelatin or sorbitol, can follow measles vaccination. Anaphylactic reactions are rare, 
occurring in one in 20 000 to one in 1 000 000 vaccinees (16). There is no association 
between a history of egg allergy and allergic reactions to measles vaccines (16). 
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3.5.2 Adverse events associated with formalin-inactivated measles vaccine
In the 1960s, a formalin-inactivated, alum-precipitated measles vaccine (FIMV) was 
licensed and administered to children in the United States. Three doses of inactivated 
vaccine elicited a protective antibody response that waned within months (110). 
Up to 60% of immunized children exposed to measles developed an unusual 
immunological response called atypical measles, characterized by high fever, infl ammation 
of the lungs (pneumonitis), and a petechial rash on the extremities (111;112) and this 
lead to withdrawal of the FIMV in 1967. In a rhesus macaque model, atypical measles 
was shown to be associated with immune complex deposition in affected tissues and a 
systemic and pulmonary eosinophilia (113). The antibody response consisted of high 
levels of complement-fi xing antibodies with low avidity for measles virus, characteristics 
that may have promoted exaggerated immune complex formation and disease. 
Atypical measles is not seen after exposure to wild-type measles virus in children who 
received live, attenuated measles vaccines.

3.5.3 Adverse events associated with high-titre measles vaccines
To overcome the inhibitory effect of maternal antibodies and protect young infants 
against measles, high-titre preparations containing 10–100 times the standard dose 
of vaccine virus were evaluated in several countries. Seroconversion rates in four to 
six month old infants immunized with high-titre measles vaccine were comparable 
to those of nine to 15 month old children vaccinated with standard-titre measles 
vaccine (17), but high-titre measles vaccine resulted in a poorly understood increase in 
mortality in immunized girls 1–2 years after vaccination in some developing countries, 
compared with girls immunized with standard-titre vaccine at nine months of age 
(114;115). The high-titre measles vaccine was withdrawn and is no longer used. 
The pathogenesis of the delayed increased mortality after the high-titre vaccine is not 
understood, but may be related to long-term suppression of immune responses similar 
to that induced by wild-type measles virus, or to alteration of immune responses 
associated with a change in the sequence of childhood vaccination (116).

3.5.4 Adverse events in HIV-infected persons
Although assumed to be rare, the risk of disease caused by attenuated measles vaccine 
virus in HIV-1-infected persons is unknown. The only documented case of fatal 
disease associated with measles vaccine virus in an HIV-1-infected person was in a 
20 year old man in the United States who died 15 months after receiving his second 
dose of measles vaccine (117). He had a very low CD4+ T-lymphocyte cell count but no 
HIV-1 related symptoms at the time of vaccination. Ten months later he developed 
a giant cell pneumonitis, and measles vaccine virus was identified in his lung. 
Fatal, disseminated infection with measles vaccine virus has been reported rarely in 
persons with other impairments of immune function (118), and measles inclusion body 
encephalitis caused by vaccine virus was reported in a child with an uncharacterized 
immune defi ciency (119). However, there is no evidence that measles vaccines cause or 
accelerate the course of SSPE in immunocompromised or immunocompetent persons 
(120).
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3.5.5 Adverse events incorrectly associated with measles vaccine
Much public attention has focused on a purported association between measles, 
mumps and rubella (MMR) vaccine and autism following publication of a report in 
1998 hypothesizing that MMR vaccine may cause a syndrome of autism and intestinal 
infl ammation (121). The publication that incited the concern was a case series describing 
12 children with a regressive developmental disorder and chronic enterocolitis. 
Nine of the children had autism. Several parents reported that the onset of the 
developmental delay was associated with MMR vaccination. This simple temporal 
association was misinterpreted and misrepresented as a possible causal relationship, 
first by the lead author of the study and then by the media and public. No 
immunological process adequately explains this purported association. Subsequently, 
several comprehensive reviews and additional epidemiological studies rejected evidence 
of a causal relationship between MMR vaccination and autism (122). One of the 
most conclusive studies was a large retrospective cohort study of over half a million 
Danish children that found no association between MMR vaccine and risk of autistic 
disorder (relative risk 0.92, 95% confi dence interval, 0.68–1.24) (123).

3.5.6 Potential nonspecifi c benefi ts of measles vaccination
A group of investigators has suggested that vaccination with standard-titre measles 
vaccine, or mild infection with wild-type measles virus, may have nonspecifi c benefi cial 
effects resulting in reduced child mortality in excess of deaths attributable to measles 
(124-126). However, no plausible immunological explanation has been put forth, 
and the hypothesis that measles vaccination results in a nonspecifi c reduction in 
childhood mortality remains controversial and unproven, and is based on potentially 
biased or confounded data (127;128). 
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4. Prospects for improving 
immune response with new 

measles vaccines

The live attenuated measles vaccines currently used have a history of proven safety 
and effectiveness over the past 40 years, and have resulted in dramatic reductions in 
measles incidence, morbidity and mortality. However, the vaccines currently used have 
some limitations. The ideal measles vaccine would be inexpensive, safe, heat-stable, 
immunogenic in neonates or very young infants, and administered as a single dose 
without needle or syringe. The age at vaccination would ideally coincide with other 
vaccines in the Expanded Programme on Immunization (EPI) schedule to maximize 
compliance and share resources. Finally, a new vaccine should not prime individuals for 
atypical measles upon exposure of immunized individuals to wild-type measles virus 
(MV) (a complication of formalin-inactivated measles vaccines), and should not be 
associated with prolonged immunosuppression, adversely affecting immune responses 
to subsequent infections (a complication of high-titre measles vaccines). 

Several candidate vaccines with some of these characteristics are undergoing development 
and testing. Naked cDNA vaccines are thermostable and inexpensive and could 
theoretically elicit antibody responses in the presence of passively-acquired maternal 
antibody. Deoxyribonucleic acid (DNA) vaccines encoding either or both the measles 
H and F proteins are safe, immunogenic and protective against measles challenge in 
naive, juvenile rhesus macaques (129). A different construct, containing H, F and N 
genes and an IL-2 molecular adjuvant, provided protection to infant macaques in the 
presence of neutralizing antibody (130;131). Alternative techniques for administering 
MV genes, such as alphavirus (132), parainfl uenza virus (133) or enteric bacterial (134) 
vectors, are also under investigation. New oral immunization strategies have been 
developed using plant-based expression of the MV H protein in tobacco (135). 

Aerosol administration of measles vaccine was fi rst evaluated in the early 1960s 
in several countries, including in the former Soviet Union and the United States. 
More recent studies in the Republic of South Africa (136) and the United Mexican States 
(137) have shown that aerosol administration of measles vaccine is highly effective in 
boosting antibody levels, although the primary humoral and cellular immune responses 
to aerosolized measles vaccines are lower than following subcutaneous administration at 
nine (138) and 12 months of age (38). A systematic review and meta-analysis concluded 
that the seroconversion rate with aerosolized measles vaccine was 94% in children 
10 to 36 months of age, compared with 97% for subcutaneously administered vaccine 
(139). Measles antibody levels and the proportion of children who were seropositive 
six years after revaccination were signifi cantly higher among children who received 
aerosol vaccine compared with those who received measles vaccines subcutaneously, 
suggesting a stronger and longer-lasting antibody response after revaccination with 
aerosol measles vaccine (140). Administration of measles vaccine by aerosol has the 
potential to facilitate measles vaccination during mass campaigns and eliminate the 
medical waste problems associated with needles and syringes, and the World Health 
Organization is working to test and bring to licensure an aerosol measles vaccine by 
2009.
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