INTRODUCTION

Vitamin A Supplementation (VAS) is one of the most cost-effective child survival strategies in areas where vitamin A deficiency (VAD) exists. VAD among children 6-59 months was estimated at 40%. In 2004 when child mortality was 283/1000 live births. In 2013 the Sierra Leone Micronutrient Survey found VAD prevalence of 17% (corrected for inflammation) when child mortality had fallen to 182/1000. Evidence shows that in settings where VAD is prevalent, twice yearly receipt of VAS by at least 80% of children 6-59 months reduce risk of mortality from measles by an average 50%, from diarrhea by an average of 40%, and all-cause of mortality by 24%.

Since 2004 a national Maternal and Child Health Week (MCHW) has been conducted targeting children 6–59 months old. These MCHWs have integrated various other interventions such as measles, albendazole, defaulter tracing for under-two children and Ante Natal Care for pregnant women. Since 2011 annual post event coverage surveys have found VAS coverage >92% equitable by sex, district, mothers occupation and age group 6-11 months versus 12-59 months.

The MCHW in November 2014 had been canceled due to the Ebola Emergency. Post Ebola a MCHW was held in April 2015 with revised social mobilization strategies to overcome public concerns regarding the health sector.

OBJECTIVES

To validate the coverage for VAS and Albendazole (ALB) following the integrated MCHW held in November 2015 (post-Ebola) and compare these with results from the MCHW, January 2014 (pre-Ebola).

METHODS

Pro-active, adapted communication strategies had been developed to address Ebola-fears prior to the MCHW in 2015. Representative national Post Event Coverage Surveys were conducted within two weeks of these MCHWs in all 14 districts in Sierra Leone. 20 clusters of 25 caregivers of children 6-59 months of age were randomly selected for interview. All the questionnaires were brought to national level for data verification and Data entered into ONS was exported into excel. Data was cleaned, double checked against the hard copies then analysed. A statistical significance was tested by chi² tests at p<0.05 significance level.

RESULTS

There was significantly lower post- versus pre-Ebola coverage for VAS: 88% (6121/6962) and 92% (5518/6033) respectively (p=0.05) but not for ALB coverage: 86% (4824/5620) and 87% (4542/5206) respectively.

Two districts had VAS coverage <80% post-Ebola in 2015: Western Area Urban (79%) and Rural (78%) and one district in 2014: Bonthe (76%).

There was equitable VAS coverage by age groups 6–11 and 12–59 months both pre- and post-Ebola.

Measles vaccination had been included in the post-Ebola MCHW for children 9-15 months and coverage was 77% (4874/6351).

Explanation for their child not having received VAS/ALB “We were away from our community” were similar, post-Ebola significantly more interviewees cited “The team did not visit our house”, “I did not hear about the campaign” (p<0.001) and 4% (37/841) cited “fear of Ebola”.

CONCLUSIONS

Coverage had been effective although there were public-concerns about safety. The urbanized Western Area had been most affected by Ebola and communication/distribution there was most challenging.

ACKNOWLEDGEMENTS

We would like to express our gratitude to all those who, directly or indirectly, contributed effectively to the MCHW and this investigation. Our sincere thanks to the Department of Foreign Affairs Trade and Development (DFATD) for their financial support.

Contact: For more information please contact Dr. Mary Hodges (mhodges@hki.org).