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Abstract

Background: Global progress towards reducing tuberculosis (TB) incidence and mortality has consistently lagged
behind the World Health Organization targets leading to a perception that large reductions in TB burden cannot be
achieved. However, several recent and historical trials suggest that intervention efforts that are comprehensive and
intensive can have a substantial epidemiological impact. We aimed to quantify the potential epidemiological
impact of an intensive but realistic, community-wide campaign utilizing existing tools and designed to achieve a
“step change” in the TB burden.

Methods: We developed a compartmental model that resembled TB transmission and epidemiology of a mid-sized
city in India, the country with the greatest absolute TB burden worldwide. We modeled the impact of a one-time,
community-wide screening campaign, with treatment for TB disease and preventive therapy for latent TB infection
(LTBI). This one-time intervention was followed by the strengthening of the tuberculosis-related health system,
potentially facilitated by leveraging the one-time campaign. We estimated the tuberculosis cases and deaths that
could be averted over 10 years using this comprehensive approach and assessed the contributions of individual
components of the intervention.

Results: A campaign that successfully screened 70% of the adult population for active and latent tuberculosis and
subsequently reduced diagnostic and treatment delays and unsuccessful treatment outcomes by 50% was
projected to avert 7800 (95% range 5450–10,200) cases and 1710 (1290–2180) tuberculosis-related deaths per 1
million population over 10 years. Of the total averted deaths, 33.5% (28.2–38.3) were attributable to the inclusion of
preventive therapy and 52.9% (48.4–56.9) to health system strengthening.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: sshres14@jh.edu
†Sourya Shrestha and Emily Kendall contributed equally.
1Department of Epidemiology, Johns Hopkins Bloomberg School of Public
Health, Baltimore, MD 21205, USA
Full list of author information is available at the end of the article

Shrestha et al. BMC Medicine          (2021) 19:244 
https://doi.org/10.1186/s12916-021-02110-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-021-02110-5&domain=pdf
http://orcid.org/0000-0002-6106-6834
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sshres14@jh.edu


Conclusions: A one-time, community-wide mass campaign, comprehensively designed to detect, treat, and
prevent tuberculosis with currently existing tools can have a meaningful and long-lasting epidemiological impact.
Successful treatment of LTBI is critical to achieving this result. Health system strengthening is essential to any effort
to transform the TB response.

Keywords: Tuberculosis, India, Tuberculosis modeling, Tuberculosis active case finding, Tuberculosis preventive
therapy, Tuberculosis health system strengthening

Background
Global progress in fighting tuberculosis (TB) has lan-
guished for decades. Currently, TB incidence is falling
by only 2% per year worldwide, far behind the pace ne-
cessary to achieve WHO’s End TB target of a 90% re-
duction in TB incidence between 2015 and 2035 [1, 2].
Of the eight highest-burden countries that account for
two-thirds of new cases, five of them—Indonesia, the
Philippines, Pakistan, Nigeria, and Bangladesh—have ex-
perienced less than 1% annual decline in incidence over
the last decade [1]. The decline exceeded 5% per year
only in South Africa, where this decline has been pre-
dominantly among HIV-positive individuals [1]. It is
likely that progress will continue at this unacceptably
slow pace unless a feasible, actionable strategy can be
developed that holds a reasonable promise of achieving a
“step change” in the TB epidemic, defined for the pur-
poses of this analysis as a significant and sustainable
change in the burden of TB effected over a short period
of time.
Historical and modern evidence clearly demonstrates

that rapid declines in TB burden are possible [3, 4]. For
example, a comprehensive campaign to find TB cases
and treat latent TB infection (LTBI) in the Yukon-
Kuskokwim Delta (Alaska, USA) saw the annual risk of
TB infection fall from 24.6% in 1949–1951 to 1.1% in
1960 [3]. More recently, community-wide screening for
active TB in Cà Mau Province, Vietnam, reduced preva-
lence by 44% over 3 years, with potential reductions in
transmission and TB incidence to be observed over the
coming years [4]. These studies, combined with exam-
ples of successful TB control programs implemented at
the regional and national levels [5, 6], provide evidence
that substantial reductions in TB burden can be
achieved with focused, intensive effort; however, scalable
and sustainable approaches for achieving such reduc-
tions have yet to be developed. Modern tools—including,
for example, highly portable digital X-ray devices with
emerging artificial intelligence (AI)-based interpretation
[7], adoption of novel short-course preventive therapy
with drugs whose price is being cut dramatically [8], and
rapid high-sensitivity molecular testing for TB (and drug
resistance) [9]—could facilitate implementation of inten-
sive, broad-scale efforts to find, treat, and prevent TB
that previously might have been deemed infeasible.

To date, modeling efforts to project the impact of TB-
focused interventions have tended to focus on individual
interventions (e.g., diagnosis with Xpert MTB/RIF [10],
LTBI treatment [11], household contact investigation
[12]) or achievement of specific elimination goals or
other targets [13, 14]. Few studies have attempted to es-
timate the population-level impact of a comprehensive
yet feasible approach to halt TB transmission at the
community level. Such broad-scale efforts are intrinsic-
ally challenging to scale up, but one attractive approach
is a “surge/maintenance” strategy, involving an initial,
time-limited phase of high-intensity intervention
followed by a more sustained phase of health system
strengthening that is facilitated by the initial “surge.”
Here, we aimed to quantify the potential epidemio-

logical impact of an intensive but realistic, community-
wide campaign, designed to achieve a “step change” in
the context of a high-burden urban population. Our ra-
tionale was that, if a realistic campaign could effect sig-
nificant and sustainable change in a short period of time,
it could motivate further innovation, wider adoption,
and greater enthusiasm for funding such an approach on
a broader scale. We conceptualized the model to repre-
sent a medium-sized city in India—the country with the
largest number of TB cases (more than 25% of the global
burden), containing multiple large cities in which TB-
related interventions could be carried out on a city-wide
scale.

Methods
Model conceptualization
We developed a deterministic compartmental model of
the natural history, transmission, and epidemiology of
TB in a medium-sized city in India, represented sche-
matically in Fig. 1. We modeled transitions between six
TB-related states: an uninfected state, two states of LTBI
(early LTBI and late LTBI), two states of active TB dis-
ease (asymptomatic and symptomatic), and a recovered
state. In this conceptualization, individuals who acquire
TB infection have a higher rate of developing active TB
(early progression) during the first years following TB
infection (early LTBI), followed by a lower rate (late pro-
gression) that persists unless LTBI is effectively treated.
Active TB is assumed to start in an asymptomatic form
that can either progress to symptomatic disease or
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resolve spontaneously without treatment. We assumed
symptomatic TB is more infectious on a per-person-
time basis and may result in death, cure through treat-
ment, or spontaneous regression to asymptomatic dis-
ease. Individuals who have late LTBI or have recovered
from previous TB disease can be reinfected but are as-
sumed to have partial immunity from previous exposure.
To capture age-specific differences in TB natural his-

tory and intervention implementation, we divided the

population into two age groups (< 15 and ≥ 15 years
old). To capture heterogeneity in TB risk such as the
greater risk associated with urban slums [15], we as-
sumed that the city contains geographically distinct but
intermixing subpopulations with higher and lower TB
risk, whose differences in risk were modeled as differ-
ences in contact patterns (transmission rates) and in
health care access (diagnosis rates and treatment suc-
cess). For simplicity and interpretability, we assumed a

Fig. 1 Schematic representation of the modeling approach. We use a compartmental modeling framework to incorporate A natural history of
tuberculosis (TB), B age structure, and C risk groups. A Natural history was captured by modeling transition of individuals between six states:
uninfected; two stages of latent TB infection (LTBI), early LTBI and late LTBI; two states of active TB disease, asymptomatic and symptomatic; and a
recovered state. Uninfected individuals develop early LTBI upon acquiring TB infection, which can either stabilize to become late LTBI or progress
early to active TB disease. Individuals with late LTBI can also develop active TB, through a late progression that occurs at a slower rate. Active TB
is assumed to start in an asymptomatic form, which can either progress to a symptomatic form or resolve spontaneously to the recovered state
without treatment. Symptomatic TB can either be diagnosed and treated or regress back to the asymptomatic form. Populations with late LTBI or
who have recovered from previous TB disease can be reinfected (i.e., return to the early LTBI state) but are assumed to have partial immunity.
Births and deaths, including TB-related deaths, are included in the model, but not shown here. Active case finding (followed by successful
treatment) is modeled as a transition from the two active TB disease states to the recovered state; preventive therapy (and successful resolution
of LTBI) is modeled as a transition from the LTBI states to recovered. B The population was subdivided into two groups based on age: children
below 15 years and adults 15 years and above. Populations in the two age groups were modeled to have different TB prevalence (reflecting
differences in natural history) and to be targeted differentially with the intervention. C The population was modeled to be living in either a high-
risk area or other lower-risk areas of the city, with intermixing between the subpopulations, and with different TB transmission and diagnosis rates
resulting in different TB prevalence in the two subpopulations
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closed population with no immigration or emigration.
For model details, see Additional File 1:S-1 for model
equations, and Additional File 1:Table S-1 for model pa-
rameters [16–25]. Model data and codes are available at
the following repository: https://doi.org/10.5061/dryad.
ttdz08kzg.

Model calibration
We calibrated the model to key demographic and epi-
demiological features of TB in urban India: data-
consistent calibration ranges for each target are listed in
Table 1. The calibrated model comprised an equally
weighted sample of simulations in which all calibrated
model outputs were within their respective target ranges.
The calibration process is described in detail in Add-
itional File 1:S-2, key outputs of the calibrated model are
shown in Fig. 2, and additional model outputs and their
comparison with calibration targets are shown in Add-
itional File 1:Fig. S-1.

Interventions
We conceptualized an intensive, city-wide intervention
with two phases. The first phase (Fig. 3) comprised a
one-time campaign to (a) screen the adult population,
15 years and above, for active TB (via a combination of
chest X-ray and Xpert Ultra testing), with the treatment
of persons identified with TB disease (active case finding,
ACF) and evaluation of their child contacts, including
treatment for active or latent TB (child contact tracing,
CCT), and (b) test the same adult population (including
adult household contacts) for latent TB, via tuberculin
skin testing (TST), with the treatment of those with

evidence of LTBI (preventive therapy, TPT). We as-
sumed that the tuberculosis skin test (TST) would have
90% sensitivity in detecting (early or late) LTBI [31, 32]
and that those with a positive TST result would be eli-
gible for preventive therapy with 69% efficacy, consistent
with the recently available 3HP regimen [33]. We mod-
eled this campaign, including the two separate compo-
nents, as occurring in an intensive but time-limited way
in a single year (2020). At baseline, we assumed that
70% of the adult population would undergo screening
for active TB. We incorporated a realistic cascade based
on current literature for the sensitivity of active TB
screening using mobile digital radiography; uptake and
sensitivity of latent TB testing; uptake, completion, and
effectiveness of TB treatment and preventive therapy;
and the proportions of affected children who would be
identifiable as contacts of a notified case (see Additional
File 1:S-3 and Additional File 1:Table S-2 for additional
details) [34–37].
The second phase of the intervention involved

health system strengthening (HSS), modeled as a set
of improvements to the TB health care system that
could be facilitated by the improved infrastructure
and lower TB burden achieved by the initial, one-
time intervention phase, potentially allowing them to
be implemented and maintained at lower incremental
cost than if implemented on their own. Such systemic
improvements could include (i) communication and
outreach efforts to increase awareness of TB, improve
access to TB services, and destigmatize TB; (ii) pa-
tient database supporting adherence support mecha-
nisms such as telecall-based monitoring, patient

Table 1 Model calibration targets and demographic assumptions

Target/assumption Calibration range* or
assumed value

Reference

Proportion of prevalent TB occurring among
children under 15 years, in 2020

0.0975–0.1625 2018 WHO estimate for India of 0.13 [1]

Prevalence of TB in the low-risk subpopulation in
2020

150–250 per 100,000 Assumption of 200 per 100,000 in non-slum dwellers [15]

Prevalence of TB in the high-risk subpopulation in
2020

345–575 per 100,000 Assumption of 460 per 100,000 among slum-dwellers [26]

Annual rate of TB infection (ARTI) in the high-risk
subpopulation in 2020

1.5–2.5% Assumption of 2% mean rate [27]

Annual TB-related mortality rate in 2020 24.75–41.25 per 100,000 2018 WHO estimate for India of 33 per 100,00 [1]

Annual percentage decline in TB incidence,
between 2000 and 2020

1.5–2.5% WHO estimate for India between 2000 and 2018 of 2% [1]

Proportion of prevalent TB that is asymptomatic in
2020

0.45–0.75 Assumption of 0.6 mean proportion [28]

Proportion of urban population in the high-risk
subpopulation

0.24 United Nation’s Millennium Development Goals database estimate
of slum-dwelling population [29]

Proportion of the population under 15 years 0.27 Populationpyramid.net [30]

Annual birth rate 0.0197 Populationpyramid.net [30]

*The ranges are taken to be ± 25% around the point estimates from the corresponding references
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welfare support during treatment, and digital adher-
ence technology (DAT) to improve linkage to care
and retention; (iii) retention of trained staff and infra-
structural improvements, including in testing and
screening equipment (achieved through investment in

the one-time intervention), to improve quality of care
and facilitate contact investigation; and (iv) enhanced
surveillance and reporting with real-time analysis to
enhance outbreak response and follow-up. The impact
of these health system strengthening activities was

Fig. 2 Simulations of the calibrated model. We calibrated the model to represent a mid-sized city in a high-burden country with TB
epidemiology resembling that of India, with a population of 2 million in 2020; 24% were assumed to live in a high-prevalence area within the
city, consistent with estimates of the slum-dwelling population [20]. Plotted curves represent simulations within the calibrated model. A The
median prevalence of tuberculosis (TB) per 100,000 in 2020 was 260 (95% range 210–300) in the overall population, 420 (350–560) in the high-
prevalence subpopulation, and 220 (160–250) in the low-risk subpopulation. B The median annual incidence of TB per 100,000 in 2020 was 250
(180–330) in the overall population and 310 (230–400) and 240 (160–310) in the higher- and lower-risk subpopulations, respectively. C The
median annual TB-related mortality rate per 100,000 in 2020 was 33 (25–41) in the overall population and 60 (40–91) and 26 (19–34) in the high-
and low-risk subpopulations, respectively. Additional model outputs and calibration targets are shown in Addtional file 1: Fig. S-1
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modeled in the reference scenario as a 50% reduction
in time to TB treatment initiation once symptomatic
and a 50% reduction in treatment non-success (see
Additional File 1:S-4 for additional details) [38–41].

Model outcomes
The primary and secondary outcomes were respectively
the total number of TB-related deaths and TB cases
averted per million population over 10 years by the

Fig. 3 Flow chart illustrating the implementation of the one-time component of the intervention. Adults (15 years and above) are contacted at
random as part of the one-time campaign; the intervention coverage (70% in the reference scenario) determines the proportion of adults who
receive the initial steps of (i) screening with chest X-ray (CXR) for active tuberculosis (TB) (with Xpert Ultra testing if CXR suggests TB) and (ii)
evaluation for latent TB (LTBI) using tuberculin skin test (TST). Those identified with LTBI (based on TST sensitivity) are offered preventive therapy;
the proportion who successfully complete it (and move to the model’s recovered state) depends on the assumed levels of uptake, completion,
and efficacy. Adults found to have active TB (dependent on the combined sensitivity of CXR and Xpert Ultra) are offered treatment; the
proportion who move to the recovered state depends on the assumed uptake and treatment cure probability. For individuals identified with TB,
all child contacts are further screened for both TB and LTBI (child contact tracing arm) and treated accordingly, similar to adults but accounting
for the different sensitivity of TB testing in children and the small proportion of TB-affected children who are contacts of the adults diagnosed
with active TB through the intervention. Baseline values for each parameter along the intervention cascade are included within parentheses, and
the numbers next to the arrows indicate the cumulative percentage of prevalent cases among adults or children. Please refer to Additional file 1
Table S-2 in the supplementary materials for details on the derivation of these quantities
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comprehensive two-phased campaign. To understand
the contributions of each intervention component, we
also evaluated the modeled intervention limited only to
the one-time campaign (without subsequent HSS) and
further evaluated an intervention of ACF and CCT alone
(without TPT). We also modeled a “hypothetical TPT-
only” comparison scenario, assuming the implementa-
tion of preventive therapy without any treatment of ac-
tive TB. This scenario is artificial and hypothetical
because in practice, any TPT intervention could not
occur without first ruling out active TB (i.e., ACF).
Nonetheless, its purpose in our current analysis is to
serve as a comparator to disaggregate the relative impact
of ACF and TPT. As a further comparator, we modeled
a scenario with no intervention and current TB services
continuing indefinitely. Outcomes were estimated by
subtracting the number of projected TB cases and TB
deaths in the intervention scenario from the projected
numbers in the comparator scenario, and the reported
uncertainty ranges represented uncertainties around nat-
ural history parameters.

Sensitivity analyses
We evaluated the sensitivity of each epidemiological out-
come to the value of each model parameter by compar-
ing the subsets of model simulations that contained the
top and bottom deciles of the corresponding parameter’s
values among all calibrated simulations. We also evalu-
ated the sensitivity of the same epidemiological out-
comes to the degree of success in implementing each
intervention component, by varying the population
coverage (for the one-time intervention) and the magni-
tude of effect (for health system strengthening) (see
Additional File 1:S-5 and Additional File 1:Figs S-2:S-6
for additional details).

Results
In the calibrated model representing a medium-sized
city in India, the median annual incidence of TB per
100,000 population prior to the intervention (i.e., at the
start of 2020) was 250 (180–330) in the overall popula-
tion: 310 (230–400) in the high-risk and 240 (160–310)
in the low-risk subpopulation (Fig. 2). Between 2000 and
2020, the overall TB incidence was modeled as declining
at 1.9% (1.5–2.5%) per year (Additional File 1:Fig. S-1).
The median annual TB-related mortality rate per
100,000 in 2020 was 33 (25–41) in the overall popula-
tion: 60 (40–91) and 26 (19–34) in the high- and low-
risk subpopulations, respectively.
We projected that, after accounting for imperfect test

sensitivity, losses to follow-up, and imperfect completion
of treatment (see supplementary materials for details),
one-time screening of 70% of the adult population would
result in the successful treatment of 42% of adults with

prevalent active TB (Fig. 3, ACF) and 30% of adults with
LTBI (Fig. 3, TPT). By screening and treating child con-
tacts for both active TB and LTBI, an additional 2.2% of
children (under 15) with active TB and 0.26% of children
with LTBI could be successfully treated (Fig. 3, CCT).
Even in the absence of lasting effects on care delivery by
the health system, this one-time intervention was pro-
jected to result in a 26.6% (95% range 25.7–27.4%) re-
duction in city-wide annual TB incidence (Fig. 4A, C,
red lines) and a 26.8% (25.9–27.6%) reduction in annual
TB mortality (Fig. 4B, D, red lines), at 10 years following
implementation. This impact was achieved immedi-
ately—with an estimated 26.7% (25.9–27.5%) reduction
in TB incidence and 31.5% (30.0–33.4%) reduction in
TB mortality within 1 year—and persisted over time,
lowering the TB incidence by 25.3% (24.1–26%) and TB
mortality by 25.3% (24.2–26%) over the next 20 years
following the intervention. Consequently, the cumulative
impact of the one-time campaign was substantial and
sustained: per 1 million population, a projected 5840
(4060–7650) cases would be averted by year 10 and
10,100 (6930–13,500) cases by year 20 (Fig. 4E, red
lines); corresponding lives saved were 809 (612–1010) by
year 10 and 1380 (1020–1750) by year 20 (Fig. 4F, red
lines).
If this one-time campaign was limited to only active

case finding and related components, it achieved an im-
mediate impact, but one that was not sustained: y curing
42% of people with prevalent active TB, this case-
finding-only intervention was projected to avert 81 (61–
103) deaths (Fig. 4F, yellow lines) per million population
averted in year 1, but only 149 (95–227) cumulatively in
years 2 through 10. By contrast, when hypothetically
limited to LTBI diagnosis and treatment (i.e., ignoring
any effect on active TB), the immediate effects were
small, but the longer-term impact was more pro-
nounced: only 18 (11–26) deaths (Fig. 4F, blue lines)
were averted by year 1, but an additional 553 (409–716)
deaths were averted in years 2 through 10 (Fig. 6B, C).
Consequently, by year 10, the cumulative impact of the
combined campaign predominantly reflected the impact
of LTBI treatment: 71% of the averted deaths and 87%
of the averted cases were achieved through treatment of
LTBI. However, on a per-person-treated basis, success-
fully treating an individual with prevalent active TB was
still 10–30 times more impactful in averting future TB
cases, compared to successfully treating an individual
with LTBI (Additional File 1:Fig. S-3).
The inclusion of follow-up activities to strengthen TB

health systems substantially augmented the impact of
the intervention. Annual TB incidence could be reduced
by 42.9% (37–52.3%) and mortality by 65.6% (59.3–
73.4%) at 10 years compared to no intervention (Fig. 5C,
D, dark burgundy lines). Consequently, if the one-time
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campaign could catalyze health system strengthening,
the total number of cases and deaths averted by year 10
increased to 7800 (5450–10,200; a 1.3-fold increase com-
pared to the one-time intervention only) and 1710
(1290–2180; a 2.1-fold increase), respectively, per million
population.
Both primary and secondary outcomes were robust

to uncertainties around most model parameters.
When comparing simulations containing the highest
10% versus lowest 10% values of any model

parameter, the most influential parameter for the
outcome of deaths averted was the TB-related mor-
tality rate among individuals with symptomatic TB
(resulting in < 20% change in median projection,
compared to the primary estimate) (Fig. 6A), and the
most influential parameters for TB cases averted
were the rates of early TB progression and spontan-
eous resolution (< 30% change, Additional File 1:Fig
S2). The projected impact of the intervention varied
in proportion to intervention magnitude (Fig. 6B, C).

Fig. 4 Projected epidemiological impact of a comprehensive one-time intervention to find and treat TB and LTBI. The projected TB incidence rate
(A) and TB-related mortality rate (B), per 100,000 per year between 2000 and 2040, in model simulations without the intervention (gray) and in
simulations with the intervention implemented in 2020 (red). Percentage reductions in annual TB incidence (C) and TB-related mortality (D) rates
(red). Also shown are simulated interventions which (hypothetically) focused solely on treating adults for LTBI with no effect on active TB,
represented by adult preventive therapy (PT) in Fig. 3 (blue), or focused solely on active case finding (ACF) and child contact tracing (CCT),
represented by ACF and CCT arms in Fig. 3 (yellow). The cumulative impact is shown as cumulative TB cases averted (E) and cumulative TB-
related deaths averted (F), for the full rapid one-time intervention (red) and for its PT (blue) and ACF/CCT (yellow) components separately
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The impact of health system strengthening likewise
reflected the achievable magnitude of reductions in
both treatment delays and treatment non-success
(Fig. 6D).

Discussion
This modeling analysis suggests that an intensive,
short-term intervention can feasibly achieve rapid
and sustained reductions in TB incidence and mor-
tality if it is (i) implemented in a community-wide
fashion reaching a large proportion of the target

population, (ii) comprehensive in treating both TB
disease and LTBI, and (iii) able to leverage infra-
structure to catalyze medium-term health system
strengthening. Specifically, we estimated that a real-
istic intervention in an urban Indian setting could
reduce TB mortality by nearly two-thirds over 10
years, saving 1710 lives per million population in the
process. Considering that TB kills more people than
any other infectious agent (except SARS-CoV-2 dur-
ing the pandemic), both in India and globally, the
number of lives saved would likely rival that of

Fig. 5 The impact of a comprehensive one-time intervention supplemented by follow-up health system strengthening. The TB incidence rate (A)
and TB-related mortality (B) rate, per 100,000 per year between 2000 and 2040, in model simulations without the intervention (gray), and with a
one-time intervention implemented in 2020, including medium-term health system strengthening after 2020 (violet). Percentage reductions in TB
incidence (C) and TB-related mortality (D) rates (darker burgundy). Also shown for comparison are reductions with the one-time intervention only
(lighter red). Cumulative cases of TB (E) and cumulative TB-related deaths (F) averted per 1 million by the full intervention (burgundy); the
cumulative impacts of the one-time intervention alone are also shown for comparison (red)
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Fig. 6 Sensitivity analyses. A Sensitivity of the primary outcome (TB-related deaths averted over 10 years by a combined intervention of a one-
time campaign plus health system strengthening), to individual model parameters. Each pair of boxplots shows variation in the outcome when
the analysis was limited to either simulations in which the value of the parameter of interest was in the top (light pink) or bottom (dark green)
decile of its values across all accepted simulations. In each boxplot, the edges of the box represent the lower and upper interquartile range, the
band in the middle represents the median, and the end of the whiskers represent 2.5th and 97.5th percentiles. The vertical dotted line shows the
median across all accepted simulations. B, C Contours show the proportion of TB deaths averted by year 1 (B) and by year 10 (C) after a one-time
campaign (with no subsequent health system strengthening) that achieves cure of LTBI in the proportion of the population indicated on the x-
axis and cure of active TB in the proportion indicated on the y-axis. D Colored level surfaces indicate the additional impact on mortality of
including health system strengthening measures with a one-time campaign, relative to the impact of the one-time campaign alone, assuming
70% coverage with one-time intervention, and a specified percentage reduction in unsuccessful treatments (x-axis) and diagnostic delays (y-axis).
The red cross in B–D indicates the reference scenario. Please see Additional file 1: Fig. S-2 for the sensitivity of the secondary outcome, TB cases
averted over 10 years
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almost any other intervention to fight an infectious
disease.
These results underscore that, while case-finding and

treatment of active TB are critical for achieving rapid re-
ductions in TB burden, coupling this with the treatment
of LTBI and health system strengthening is essential for
longer-term impact. In this analysis, more than 70% of
TB deaths and up to 87% of TB cases averted over a 10-
year period after a one-time intervention were attribut-
able to treating LTBI. These findings are consistent with
previous research highlighting the importance of pre-
ventive therapy in achieving long-term success against
TB [42]. Furthermore, the achievable 10-year reduction
in TB deaths more than doubled when the one-time
intervention was coupled with health system strengthen-
ing that improved care delivery over the medium term.
These results should not, however, diminish the import-
ance of finding and treating active TB in the short term.
Not only is ruling out active TB essential for LTBI treat-
ment but the number of (downstream) cases averted by
treatment of a prevalent active TB is 10–30 times
greater than those averted by treating one person with
LTBI (Additional file 1:Fig. S-3). Nevertheless, since the
prevalence of LTBI is nearly 100 times larger than the
prevalence of TB disease (median prevalence of LTBI
39% compared to the median prevalence of TB of 420
per 100,000, Additional file 1:Fig. S-1), treatment of
LTBI plays a major role in reducing TB burden.
Since treatment of LTBI is critical to achieving large

reductions in incidence and mortality, barriers to achiev-
ing high coverage of LTBI treatment also limit the over-
all effectiveness of large-scale TB interventions.
Accounting for existing gaps in the LTBI care cascade—
as done here—is important to inform realistic expecta-
tions for what an intensive one-time intervention can
achieve. Previous studies have highlighted substantial
gaps in the cascade of LTBI care and challenges in the
implementation of LTBI treatment [43]. Thus, not only
does a high-impact TB prevention campaign require ac-
curate LTBI diagnostic tests and high-efficacy preventive
regimens, but it also requires strategies to achieve high
uptake and completion of LTBI treatment. Shorter treat-
ment regimens can improve completion [44]; maximiz-
ing the impact of such regimens will require combining
them with additional innovative approaches to help aug-
ment the cascade of LTBI diagnosis and treatment [45].
The use of tests for LTBI with imperfect specificity (e.g.,
TST) may result in overdiagnosis and treatment of
people without underlying LTBI, which are not captured
in the epidemiological impact studied here, but will have
consequences for resource use and costs.
The high prevalence of TB in many high-burden set-

tings also reflects underlying weaknesses in health care
systems [46, 47]. These weaknesses often manifest as

limited access to care, prolonged delays in diagnosis and
treatment [39], losses to follow-up, and treatment non-
success [41]. Our results underscore the potential impact
of HSS and also highlight the opportunity of leveraging
a one-time campaign to mitigate some of these under-
lying weaknesses in the TB health care system—though
strengthening health systems will have an important im-
pact on TB, even in the absence of a one-time biomedi-
cally focused intervention as modeled here. Specifically,
we found that HSS could more than double the number
of lives saved by a comprehensive, one-time, TB-focused
intervention. Even a modest 20% reduction in diagnostic
delay alone augmented this 10-year impact by 25% (Fig.
6D). Hence, in designing major interventions to find and
treat people with TB (and LTBI), implementers must
recognize the importance of sustained improvement of
TB care over the longer term—potentially by leveraging
those short-term activities without incurring substantial
additional costs.
As an example of the potential for large-scale interven-

tions to be economically viable, reduced TB caseloads
achieved by a one-time intervention could free up re-
sources to enhance control efforts or maintain quality of
care. Data collected as part of the initial intervention
could be used to identify high-risk populations and/or
gaps in the existing system of TB care that could be
closed with targeted interventions. Furthermore, the in-
vestment that would be made during the initial interven-
tion to reach, test, and treat a substantial proportion of
the community could be leveraged to increase general
awareness of TB and TB services in the population im-
prove patient detection and adherence (e.g., by building
comprehensive patient/population database) and im-
prove quality of patient care (e.g., by retaining equip-
ment and staffs trained for the initial intervention). HSS
has the potential to be impactful in high-incidence set-
tings like India, whether combined with a larger-scale
TB-focused biomedical intervention (as modeled here)
or as a stand-alone approach. As such, HSS should be
considered a critical component of any coordinated TB
response, regardless of whether biomedical TB interven-
tions are also being planned. That HSS measures may be
further enabled by an intensive campaign to find and
treat both active and latent TB lends further weight to
the argument for adopting such a combined approach.
As such, high priority should be assigned to implemen-
tation research to identify specific programs that im-
prove the TB care cascade in specific settings (especially
as performed after major case-finding and treatment
campaigns) and to assess the generalizability of such
programs across settings.
These findings are subject to certain limitations. The

impact of these interventions could be higher if targeted
to specific high-risk populations that bear a larger
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burden of TB and contribute disproportionately to trans-
mission. However, identifying such populations and
achieving high coverage therein may present its own
challenges. We included a high-risk population in our
model to capture some of this heterogeneity, but we
found that at high levels of coverage in the overall popu-
lation, targeting the intervention preferentially to this
high-risk population did not substantially increase the
overall impact of the intervention (Additional File 1:Fig.
S-4). Furthermore, the added value of targeting interven-
tions to such high-risk populations depends on the fac-
tors that are setting-specific and difficult to precisely
measure, such as the variation in TB prevalence over
small geographic scales and the degree of mixing and
transmission between subpopulations [48]. With early
trial results suggesting that novel TB vaccines are mod-
erately efficacious in reducing the risk of TB disease
[49], future modeling work could also consider incorpor-
ating vaccination as a part of a comprehensive interven-
tion. The durability and efficacy of vaccine-derived
protection are likely to be critical considerations for such
analyses. For simplicity, we conceptualized a closed
population with no immigration or emigration. The ac-
tual impact of an intervention, when evaluated only in
the population where the intervention was conducted, is
likely to be diminished by such migration. However,
when migration occurs, the intervention’s effect on emi-
grants’ risk of TB will extend the benefits of the inter-
vention beyond the local population. Finally, we adopted
a number of simplifying assumptions and data choices
to broadly represent both an urban population-center in
India and implementation of a comprehensive mass
intervention; the projections created here are therefore
not fully reflective of the impact of any specific interven-
tion as implemented in a specific (and inherently more
complex) epidemiological setting.
We made several modeling choices to represent the

natural history of TB, in which data are either sparse or
open to multiple interpretations. (i) We assumed that
TB infection imparts partial immunity to reinfection (be-
cause individuals with evidence of LTBI are less likely to
develop TB disease after reexposure [18, 19]) and that
this immune protection extends to those who were pre-
viously treated (for both LTBI and TB disease) or those
who spontaneously resolved. The inclusion of protection
for those who had received treatment is consistent with
other TB modeling literature [50, 51], and has little im-
pact on our main results, but it means that our model
relies solely on relapse and geographic risk heterogeneity
to account for the higher risk of recurrence faced after
treatment for TB disease [52]. (ii) Relatedly, we modeled
the rate of late progression of LTBI to be non-zero; re-
cent analyses have argued that remote infections rarely
progress after a few years [53] or may even become

sterilized without antitubercular therapy [54]. The true
risk of progression among individuals with remote TB
infection remains poorly understood [23] but can be
consequential for the impact of these interventions. In
our simulations, we found that the impact in terms of
cases averted was about 30% larger in simulations where
the rates of late progression were in the top decile, com-
pared to the bottom decile (Additional File 1:Fig. S-2).
In addition, if preventive therapy could be targeted to in-
dividuals with recent infection (e.g., if diagnostic assays
for recent infection could be developed), up to 89% of
cumulative 10-year TB mortality could be averted, while
only delivering preventive therapy to one-tenth of the in-
fected population (Additional File 1:S-6). Furthermore, if
the reactivation rates of remote TB reactivation (and
consequently the lifetime benefits of TPT) are substan-
tially lower, it will be important to carefully weigh the
risks and benefits of TPT. Prioritizing populations based
on risks, such as household contacts of known TB cases
and those with underlying risk factors, may be necessary.
(iii) Finally, our model included the potential for TB dis-
ease to resolve without treatment (via regression and
spontaneous resolution); the estimated rates of regres-
sion and resolution varied over a wide range in our cali-
brated models, reflecting not just uncertainties in these
estimates but also a correlation with other parameters
(e.g., late progression rates). Rates of resolution in the
bottom decile, which were closer to estimates in a recent
study [24], yielded estimates of cases averted that were
up to 15% smaller than the median estimate (Additional
File 1:Fig. S-2). However, the estimated number of
deaths averted was more robust to these parameter
choices (Fig. 6).
In this analysis, we focused on the epidemiological

outcomes and did not consider estimates of costs. A nat-
ural next step would be to assess the costs of imple-
menting a comprehensive one-time intervention of this
scale and to estimate the potential benefits in terms of
future costs that could be saved, as well as mortality and
morbidity that could be averted. Furthermore, a compre-
hensive cost-effectiveness analysis of our proposed two-
phased approach would also need to evaluate the feasi-
bility and costs of incorporating health system strength-
ening activities into large case-finding campaigns.

Conclusions
In conclusion, this modeling study suggests that a fo-
cused and intensive intervention to halt TB transmission
in a high-burden setting, leveraged to also strengthen
subsequent TB care by the routine health system, can re-
duce TB incidence by over 40% (7800 cases averted per
million population) and TB mortality by almost two-
thirds (1710 lives saved per million population) over a
10-year period. Such impact would represent a
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substantial acceleration of the currently modest decline
in TB burden seen throughout the world in recent years.
These impacts can be achieved rapidly—with much of
the reductions occurring in the first year—and can be
sustained for decades. The success of such an interven-
tion, however, is closely tied to the ability to effectively
treat LTBI and to strengthen the TB cascade of care
through an initial investment. A rapid and sustained
“step change” in TB burden is therefore achievable, but
only with a comprehensive approach that includes case-
finding and treatment of active TB, treatment of LTBI,
and long-term strengthening of the TB health care
system.

Abbreviations
ACF: Active case finding; CCT: Child contact tracing; CXR: Chest X-ray;
HIV: Human immunodeficiency virus; HSS: Health system strengthening;
LTBI: Latent tuberculosis infection; TB: Tuberculosis; TPT: Tuberculosis
preventive therapy; TST: Tuberculin skin test

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12916-021-02110-5.

Additional file 1:. S-1. Model details. S-2. Model calibration. S-3. Model-
ing the effects of the one-time intervention. S-4. Modeling the effects of
medium-term health system strengthening. S-5. Sensitivity analyses. Fig-
ure S-1. Comparison of model simulations, and calibration targets. Figure
S-2. Sensitivity analyses of the secondary outcome, TB cases averted over
10 years by a combined intervention of a one-time campaign plus health
system strengthening. Figure S-3. Comparing the impact of curing LTBI
versus TB disease. Figure S-4. The impact of a one-time intervention
(without health system strengthening) when the intervention was tar-
geted to the high-risk population. Figure S-5. The impact of a one-time
intervention (without health system strengthening), with shorter duration
of early LTBI. Figure S-6. The impact of the full intervention when pre-
ventive therapy is limited to recent infections. Table S-1. Model parame-
ters. Table S-2. Model parameters for one-time intervention.

Acknowledgements
We thank James Trauer and three anonymous reviewers for their valuable
feedback during the review.

Authors’ contributions
Study conception: SS, EK, NA, and DWD. Study design: SS, EK, RC, RJ, MC, NA,
and DWD. Model development: SS and EK. Data synthesis: SS, EK, RC, and RJ.
Model simulation and analysis: SS and EK. Writing the first draft of the
manuscript: SS. Interpretation of the results and revision of the manuscript:
all authors. All authors read and approved the final manuscript.

Funding
This work was supported by funding from the UK Foreign, Commonwealth &
Development Office (FCDO). It was also supported by awards from the
National Institute of Allergy and Infectious Disease (K01AI138853 to PK, and
K08AI127908 to EAK), and the National Heart, Lung, and Blood Institute
(R01HL138728 to DWD) of the US National Institutes of Health, and the UK
Medical Research Council (MR/R015600/1 to NA).

Availability of data and materials
Data and model codes can be accessed at the following repository: https://
doi.org/10.5061/dryad.ttdz08kzg.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests

Author details
1Department of Epidemiology, Johns Hopkins Bloomberg School of Public
Health, Baltimore, MD 21205, USA. 2Johns Hopkins School of Medicine,
Baltimore, USA. 3Clinton Health Access Initiative, Boston, USA. 4Department
of Infectious Disease Epidemiology, Imperial College, London, UK.

Received: 19 March 2021 Accepted: 27 August 2021

References
1. World Health Organization. Global Tuberculosis Report. Geneva. Switzerland.

2020;2020.
2. World Health Organization END TB strategy, 2015. Available at: http://www.

who.int/tb/post2015_strategy/en/.
3. Comstock GW, Philip RN. Decline of the tuberculosis epidemic in Alaska.

Public Health Rep. 1961;76(1):19–24. https://doi.org/10.2307/4591052.
4. Marks GB, Nguyen NV, Nguyen PT, Nguyen TA, Nguyen HB, Tran KH, et al.

Community-wide screening for tuberculosis in a high-prevalence setting.
New England Journal of Medicine. 2019;381(14):1347–57. https://doi.org/1
0.1056/NEJMoa1902129.

5. Paolo WF Jr, Nosanchuk JD. Tuberculosis in New York City: recent lessons
and a look ahead. The Lancet infectious diseases. 2004;4(5):287–93. https://
doi.org/10.1016/S1473-3099(04)01004-7.

6. Go U, Park M, Kim UN, Lee S, Han S, Lee J, et al. Tuberculosis prevention
and care in Korea: evolution of policy and practice. Journal of Clinical
Tuberculosis and Other Mycobacterial Diseases. 2018;11:28–36. https://doi.
org/10.1016/j.jctube.2018.04.006.

7. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, Adhikari LM,
Carter EJ, Puri L, Codlin AJ, Creswell J. Using artificial intelligence to read
chest radiographs for tuberculosis detection: a multi-site evaluation of the
diagnostic accuracy of three deep learning systems. Scientific Reports. 2019;
9(1):1-0.

8. Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E,
et al. Three months of rifapentine and isoniazid for latent tuberculosis
infection. New England Journal of Medicine. 2011;365(23):2155–66. https://
doi.org/10.1056/NEJMoa1104875.

9. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B,
et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and
rifampicin resistance: a prospective multicentre diagnostic accuracy study.
The Lancet Infectious Diseases. 2018;18(1):76–84. https://doi.org/10.1016/S14
73-3099(17)30691-6.

10. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population health
impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF:
a dynamic simulation and economic evaluation. PLoS Med. 2012;9(11):
e1001347. https://doi.org/10.1371/journal.pmed.1001347.

11. Cohen T, Lipsitch M, Walensky RP, Murray M. Beneficial and perverse effects
of isoniazid preventive therapy for latent tuberculosis infection in HIV–
tuberculosis coinfected populations. Proceedings of the National Academy
of Sciences. 2006;103(18):7042–7. https://doi.org/10.1073/pnas.0600349103.

12. Kasaie P, Andrews JR, Kelton WD, Dowdy DW. Timing of tuberculosis
transmission and the impact of household contact tracing. An agent-based
simulation model. American Journal of Respiratory and Critical Care
Medicine. 2014;189(7):845–52. https://doi.org/10.1164/rccm.201310-1846OC.

13. Hill PC, Dye C, Viney K, Tabutoa K, Kienene T, Bissell K, et al. Mass treatment
to eliminate tuberculosis from an island population. The International
Journal of Tuberculosis and Lung Disease. 2014;18(8):899–904. https://doi.
org/10.5588/ijtld.14.0007.

14. Houben RM, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N,
Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global
tuberculosis targets in South Africa, China, and India: a combined analysis of

Shrestha et al. BMC Medicine          (2021) 19:244 Page 13 of 15

https://doi.org/10.1186/s12916-021-02110-5
https://doi.org/10.1186/s12916-021-02110-5
https://doi.org/10.5061/dryad.ttdz08kzg
https://doi.org/10.5061/dryad.ttdz08kzg
http://www.who.int/tb/post2015_strategy/en/
http://www.who.int/tb/post2015_strategy/en/
https://doi.org/10.2307/4591052
https://doi.org/10.1056/NEJMoa1902129
https://doi.org/10.1056/NEJMoa1902129
https://doi.org/10.1016/S1473-3099(04)01004-7
https://doi.org/10.1016/S1473-3099(04)01004-7
https://doi.org/10.1016/j.jctube.2018.04.006
https://doi.org/10.1016/j.jctube.2018.04.006
https://doi.org/10.1056/NEJMoa1104875
https://doi.org/10.1056/NEJMoa1104875
https://doi.org/10.1016/S1473-3099(17)30691-6
https://doi.org/10.1016/S1473-3099(17)30691-6
https://doi.org/10.1371/journal.pmed.1001347
https://doi.org/10.1073/pnas.0600349103
https://doi.org/10.1164/rccm.201310-1846OC
https://doi.org/10.5588/ijtld.14.0007
https://doi.org/10.5588/ijtld.14.0007


11 mathematical models. Lancet Glob Health. 2016;4(11):e806–e15. https://
doi.org/10.1016/S2214-109X(16)30199-1.

15. Pandey S, Chadha VK, Laxminarayan R, Arinaminpathy N. Estimating
tuberculosis incidence from primary survey data: a mathematical modeling
approach. The International Journal of Tuberculosis and Lung Disease. 2017;
21(4):366–74. https://doi.org/10.5588/ijtld.16.0182.

16. Dye C, Garnett GP, Sleeman K, Williams BG. Prospects for worldwide
tuberculosis control under the WHO DOTS strategy. The Lancet. 1998;
352(9144):1886–91. https://doi.org/10.1016/S0140-6736(98)03199-7.

17. Basu S, Orenstein E, Galvani AP. The theoretical influence of immunity
between strain groups on the progression of drug-resistant tuberculosis
epidemics. The Journal of Infectious Diseases. 2008;198(10):1502–13. https://
doi.org/10.1086/592508.

18. Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk
of progression to active tuberculosis following reinfection with
Mycobacterium tuberculosis. Clinical Infectious Diseases. 2012;54(6):784–91.
https://doi.org/10.1093/cid/cir951.

19. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of
age-dependent risks of disease and the role of reinfection. Epidemiology &
Infection. 1997;119(2):183–201. https://doi.org/10.1017/S0950268897007917.

20. Shrestha S, Chatterjee S, Rao KD, Dowdy DW. Potential impact of spatially
targeted adult tuberculosis vaccine in Gujarat, India. Journal of The Royal
Society Interface. 2016;13(116):20151016. https://doi.org/10.1098/rsif.2015.1
016.

21. Vynnycky E, Fine PE. The annual risk of infection with Mycobacterium
tuberculosis in England and Wales since 1901. The International Journal of
Tuberculosis and Lung Disease. 1997;1(5):389–96.

22. Ragonnet R, Trauer JM, Scott N, Meehan MT, Denholm JT, McBryde ES.
Optimally capturing latency dynamics in models of tuberculosis
transmission. Epidemics. 2017;21:39–47. https://doi.org/10.1016/j.epidem.201
7.06.002.

23. Dale KD, Karmakar M, Snow KJ, Menzies D, Trauer JM, Denholm JT.
Quantifying the rates of late reactivation tuberculosis: a systematic review.
The Lancet Infectious Diseases. 2021; In press. https://doi.org/10.1016/S14
73-3099(20)30728-3.

24. Ragonnet R, Flegg JA, Brilleman SL, Tiemersma EW, Melsew YA, McBryde ES,
Trauer JM. Revisiting the natural history of pulmonary tuberculosis: a
Bayesian estimation of natural recovery and mortality rates. Clinical
Infectious Diseases. 2020:ciaa602.

25. Kendall EA, Shrestha S, Cohen T, Nuermberger E, Dooley KE, Gonzalez-
Angulo L, et al. Priority-setting for novel drug regimens to treat tuberculosis:
an epidemiologic model. PLoS Medicine. 2017;14(1):e1002202. https://doi.
org/10.1371/journal.pmed.1002202.

26. Dhanaraj B, Papanna MK, Adinarayanan S, Vedachalam C, Sundaram V,
Shanmugam S, et al. Prevalence and risk factors for adult pulmonary
tuberculosis in a metropolitan city of South India. PloS One. 2015;10(4):
e0124260. https://doi.org/10.1371/journal.pone.0124260.

27. Gopi PG, Venkatesh Prasad V, Vasantha M, Subramani R, Tholkappian AS,
Sargunan D, et al. Annual risk of tuberculosis infection in Chennai city.
Indian Journal of Tuberculosis. 2008;55(3):157–61.

28. Onozaki I, Law I, Sismanidis C, Zignol M, Glaziou P, Floyd K. National
tuberculosis prevalence surveys in Asia, 1990–2012: an overview of results
and lessons learned. Tropical Medicine & International Health. 2015 Sep;
20(9):1128–45. https://doi.org/10.1111/tmi.12534.

29. United Nations. Millennium Development Goals. Accessed at http://mdgs.
un.org/unsd/mdg/Data.aspx?cr=356 (July 12, 2020).

30. Population Pyramids of the World from 1950 to 2100. Accessed at https://
www.populationpyramid.net/india/2019/ (July 12, 2020)

31. Kik SV, Franken WP, Mensen M, Cobelens FG, Kamphorst M, Arend SM, et al.
Predictive value for progression to tuberculosis by IGRA and TST in
immigrant contacts. European Respiratory Journal. 2010;35(6):1346–53.
https://doi.org/10.1183/09031936.00098509.

32. Dick Menzies, 2020. Use of the tuberculin skin test for diagnosis of latent
tuberculosis infection (tuberculosis screening) in adults - UpToDate.
Accessed at https://www.uptodate.com/contents/use-of-the-tuberculin-skin-
test-for-diagnosis-of-latent-tuberculosis-infection-tuberculosis-screening-in-a
dults on Nov 19, 2020.

33. Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Quach P, et al. Efficacy and
completion rates of rifapentine and isoniazid (3HP) compared to other
treatment regimens for latent tuberculosis infection: a systematic review
with network meta-analyses. BMC Infectious Diseases. 2017;17(1):1–1.

34. World Health Organization. Chest radiography in tuberculosis detection;
summary of current WHO recommendations and guidance on
programmatic approaches. Accessed at https://www.who.int/tb/publica
tions/chest-radiography/en/ on Jan 4, 2021.

35. Atherton RR, Cresswell FV, Ellis J, Kitaka SB, Boulware DR. Xpert MTB/RIF
Ultra for tuberculosis testing in children: a mini-review and
commentary. Frontiers in Pediatrics. 2019;7:34. https://doi.org/10.3389/
fped.2019.00034.

36. WHO Tuberculosis Research Office. FURTHER studies of geographic variation
in naturally acquired tuberculin sensitivity. Bulletin of the World Health
Organization. 1955;12:63–83 ISSN 0042-9686.

37. Borgdorff MW, Van Soolingen D. The re-emergence of tuberculosis: what
have we learnt from molecular epidemiology? Clinical Microbiology and
Infection. 2013;19(10):889–901. https://doi.org/10.1111/1469-0691.12253.

38. Mundra A, Kothekar P, Deshmukh PR, Dongre A. Why tuberculosis patients
under revised national tuberculosis control programme delay in health-care
seeking? A mixed-methods research from Wardha District. Maharashtra.
Indian Journal of Public Health. 2019;63(2):94–100. https://doi.org/10.4103/
ijph.IJPH_138_18.

39. Bronner Murrison L, Ananthakrishnan R, Swaminathan A, Auguesteen S,
Krishnan N, Pai M, et al. How do patients access the private sector in
Chennai, India? An evaluation of delays in tuberculosis diagnosis. The
International Journal of Tuberculosis and Lung Disease. 2016;20(4):544–51.
https://doi.org/10.5588/ijtld.15.0423.

40. Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S, Patil A. Durations and delays
in care seeking, diagnosis and treatment initiation in uncomplicated
pulmonary tuberculosis patients in Mumbai. India. PloS One. 2018;11(3):
e0152287.

41. Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE,
Chadha VK, et al. The tuberculosis cascade of care in India’s public sector: a
systematic review and meta-analysis. PLoS Medicine. 2016;13(10):e1002149.
https://doi.org/10.1371/journal.pmed.1002149.

42. Dye C, Glaziou P, Floyd K, Raviglione M. Prospects for tuberculosis
elimination. Annual Review of Public Health. 2013;34(1):271–86. https://doi.
org/10.1146/annurev-publhealth-031912-114431.

43. Alsdurf H, Hill PC, Matteelli A, Getahun H, Menzies D. The cascade of care in
diagnosis and treatment of latent tuberculosis infection: a systematic review
and meta-analysis. The Lancet Infectious Diseases. 2016;16(11):1269–78.
https://doi.org/10.1016/S1473-3099(16)30216-X.

44. Menzies D, Adjobimey M, Ruslami R, Trajman A, Sow O, Kim H, et al. Four
months of rifampin or nine months of isoniazid for latent tuberculosis in
adults. New England Journal of Medicine. 2018;379(5):440–53. https://doi.
org/10.1056/NEJMoa1714283.

45. Fox GJ, Dobler CC, Marais BJ, Denholm JT. Preventive therapy for latent
tuberculosis infection—the promise and the challenges. International
Journal of Infectious Diseases. 2017;56:68–76. https://doi.org/10.1016/j.ijid.2
016.11.006.

46. Atun R, Weil DE, Eang MT, Mwakyusa D. Health-system strengthening and
tuberculosis control. The Lancet. 2010;375(9732):2169–78. https://doi.org/1
0.1016/S0140-6736(10)60493-X.

47. Creswell J, Codlin AJ, Andre E, Micek MA, Bedru A, Carter EJ, et al. Results
from early programmatic implementation of Xpert MTB/RIF testing in nine
countries. BMC Infectious Diseases. 2014;14(1):2. https://doi.org/10.1186/14
71-2334-14-2.

48. Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis
transmission and the role of geographic hotspots in propagating epidemics.
Proceedings of the National Academy of Sciences. 2012;109(24):9557–62.
https://doi.org/10.1073/pnas.1203517109.

49. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun
B, et al. Final analysis of a trial of M72/AS01E vaccine to prevent
tuberculosis. New England Journal of Medicine. 2019;381(25):2429–39.
https://doi.org/10.1056/NEJMoa1909953.

50. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a
re-estimation using mathematical modelling. PLoS Medicine. 2016;13(10):
e1002152. https://doi.org/10.1371/journal.pmed.1002152.

51. Menzies NA, Cohen T, Hill AN, Yaesoubi R, Galer K, Wolf E, et al. Prospects
for tuberculosis elimination in the United States: results of a transmission
dynamic model. American Journal of Epidemiology. 2018;187(9):2011–20.
https://doi.org/10.1093/aje/kwy094.

52. Marx F, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, et al.
Tuberculosis control interventions targeted to previously treated people in

Shrestha et al. BMC Medicine          (2021) 19:244 Page 14 of 15

https://doi.org/10.1016/S2214-109X(16)30199-1
https://doi.org/10.1016/S2214-109X(16)30199-1
https://doi.org/10.5588/ijtld.16.0182
https://doi.org/10.1016/S0140-6736(98)03199-7
https://doi.org/10.1086/592508
https://doi.org/10.1086/592508
https://doi.org/10.1093/cid/cir951
https://doi.org/10.1017/S0950268897007917
https://doi.org/10.1098/rsif.2015.1016
https://doi.org/10.1098/rsif.2015.1016
https://doi.org/10.1016/j.epidem.2017.06.002
https://doi.org/10.1016/j.epidem.2017.06.002
https://doi.org/10.1016/S1473-3099(20)30728-3
https://doi.org/10.1016/S1473-3099(20)30728-3
https://doi.org/10.1371/journal.pmed.1002202
https://doi.org/10.1371/journal.pmed.1002202
https://doi.org/10.1371/journal.pone.0124260
https://doi.org/10.1111/tmi.12534
http://mdgs.un.org/unsd/mdg/Data.aspx?cr=356
http://mdgs.un.org/unsd/mdg/Data.aspx?cr=356
https://www.populationpyramid.net/india/2019/
https://www.populationpyramid.net/india/2019/
https://doi.org/10.1183/09031936.00098509
https://www.uptodate.com/contents/use-of-the-tuberculin-skin-test-for-diagnosis-of-latent-tuberculosis-infection-tuberculosis-screening-in-adults
https://www.uptodate.com/contents/use-of-the-tuberculin-skin-test-for-diagnosis-of-latent-tuberculosis-infection-tuberculosis-screening-in-adults
https://www.uptodate.com/contents/use-of-the-tuberculin-skin-test-for-diagnosis-of-latent-tuberculosis-infection-tuberculosis-screening-in-adults
https://www.who.int/tb/publications/chest-radiography/en/
https://www.who.int/tb/publications/chest-radiography/en/
https://doi.org/10.3389/fped.2019.00034
https://doi.org/10.3389/fped.2019.00034
https://doi.org/10.1111/1469-0691.12253
https://doi.org/10.4103/ijph.IJPH_138_18
https://doi.org/10.4103/ijph.IJPH_138_18
https://doi.org/10.5588/ijtld.15.0423
https://doi.org/10.1371/journal.pmed.1002149
https://doi.org/10.1146/annurev-publhealth-031912-114431
https://doi.org/10.1146/annurev-publhealth-031912-114431
https://doi.org/10.1016/S1473-3099(16)30216-X
https://doi.org/10.1056/NEJMoa1714283
https://doi.org/10.1056/NEJMoa1714283
https://doi.org/10.1016/j.ijid.2016.11.006
https://doi.org/10.1016/j.ijid.2016.11.006
https://doi.org/10.1016/S0140-6736(10)60493-X
https://doi.org/10.1016/S0140-6736(10)60493-X
https://doi.org/10.1186/1471-2334-14-2
https://doi.org/10.1186/1471-2334-14-2
https://doi.org/10.1073/pnas.1203517109
https://doi.org/10.1056/NEJMoa1909953
https://doi.org/10.1371/journal.pmed.1002152
https://doi.org/10.1093/aje/kwy094


a high incidence setting: a modelling study. The Lancet Global Health. 2018;
6(4):e426–35. https://doi.org/10.1016/S2214-109X(18)30022-6.

53. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of
tuberculosis. BMJ. 2018;362.

54. Emery JC, Richards AS, Dale KD, McQuaid CF, White RG, Denholm JT, et al.
Self-clearance of mycobacterium tuberculosis infection: implications for
lifetime risk and population at-risk of tuberculosis disease. Proceedings of
the Royal Society B. 2021;288(1943):20201635. https://doi.org/10.1098/rspb.2
020.1635.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Shrestha et al. BMC Medicine          (2021) 19:244 Page 15 of 15

https://doi.org/10.1016/S2214-109X(18)30022-6
https://doi.org/10.1098/rspb.2020.1635
https://doi.org/10.1098/rspb.2020.1635

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Model conceptualization
	Model calibration
	Interventions
	Model outcomes
	Sensitivity analyses

	Results
	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

