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Abstract 

Background. Millions of children under 60 months old worldwide are undernourished. Olofin et al. (2013) 
investigates the risks associated with suboptimal growth in such children using older data from 

prospective cohort studies in 10 countries. The Cox proportional hazards model is fit to each data set, and 

the results pooled meta-analytically. 

Methods. To engage critically with Olofin, the study is replicated. 5 of the 10 data sets are obtained, as well 

as one not used in Olofin. The original results are approximately replicated. A methodological issue is 

exposed: the Cox model’s assumption that hazard ratios are fixed over time is violated by aging of 
measurement. Hazard ratios are higher in data sets with more frequent follow-up. Two alternative models 

are applied: a probit model for death within one year of measurement, and a stochastic process (“MIG”) 

model. 

Results. The two new methods yield one-year mortality RRs that are lower than some corresponding HRs in 

Olofin. Where Olofin reports an HR for weight-for-height z (WHZ) < –3 vs. WHZ > –1 of 11.63, the probit 

and MIG RRs for WHZ = –3.5 vs. –0.5 are 3.75 (2.22, 6.31) and 5.61 (2.58, 12.18). 

Conclusions. For coherence, pooled analyses of historical data with various follow-up frequencies should 

employ methods that are less sensitive to timing effects and should state results with reference to specified 

follow-up periods. HRs and RRs are not constant. 

Introduction 
As an input to GiveWell’s assessment of community-based management of acute malnutrition (CMAM), I 

reviewed and reanalyzed literature on the statistical association between anthropometric indicators of 

nutritional status in children and subsequent mortality. The starting point was Olofin et al. (2013). That 

review gathers data from previous studies in ten countries, fits Cox proportional hazards models to each, 
combines the results with random-effects meta-analysis, and reports hazard ratios for various 

anthropometric groups. Many of the studies from which data are taken focus on other questions, such as 

the benefit of Vitamin A supplementation. All repeatedly measure young children in community settings 

before the advent of CMAM, between the mid-1970s and mid-1990s. 

The present review works with five of the Olofin data sets, as well as one from the Democratic Republic of 

Congo (Van den Broeck, Eeckels, and Vuylsteke 1993; Schwinger et al. 2019).1 The main finding is that 
aging of measurement is likely a major and unrecognized source of disagreement across data sets on the size 

of the relationship between anthropometry and death. When standard methods are applied to the data set 

with the most frequent follow-up—Adair et al. (1993), from the Philippines, with bimonthly measurements 
of children—the methods are assessing the risks associated with anthropometry taken 0–2 months before, 

 
1 A note on the ethics of this work: the Harvard School of Public Health’s Institutional Review Board assessed Olofin’s 
pooled analysis of anonymized human subjects data as exempt from ethics requirements (Olofin et al. 2013, p. 2). 
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or 1 month ago on average. When they are applied to the data from Senegal (Garenne et al. 2000), most of 

which was gathered at 6 months intervals, the methods are assessing a different set of risks, those 

associated with anthropometry taken on average at least 3 months ago. Just as a Covid test result quickly 
loses relevance, the hazard ratios associated with indicators of wasting decline with time since 

measurement. This probably explains why in the Olofin et al. (2013, Table S2(C)) review, the Philippines 

data produces the highest hazard ratio for weight-for-height z score (WHZ) < –3 and the Senegal data the 
lowest: 39.00 vs. 5.41. (According to a World Health Organization standard, WHZ < –3 justifies a diagnosis 

of severe acute malnutrition, or SAM.) 

To improve comparability of risk and hazard ratios from data sets with differing follow-up frequencies, this 

paper develops and applies two philosophically opposite methods, which turn out to generate similar 

results. The first approach throws away most of the timing information in the data sets in order to 

homogenize them. In particular, where data permit, single, one-year spells are constructed for each child. 
Each begins with the child’s first measurement after age 6 months. Probit models are fit to the binary 

survival outcome; the timing of deaths within that year plays no role. 

The other approach retains all the timing information and marshals a more sophisticated estimation model 
that, to the extent that its mathematical assumptions hold, is robust to changes in follow-up frequency. This 

is the stochastic process survival model of Aalen (1994). I call it the MIG model because it generates a 

mixture inverse Gaussian distribution for time of failure. The model generates unobserved heterogeneity 
by endowing subjects with “health trajectories” with random slopes within each episode. Hazards and 

hazard ratios fluctuate in time since last measurement, as subjects with downward slopes experience a 

burst of mortality early on and the survivors then escape most risk of death. 

For the sake of consistent interpretation, and with an eye toward assessing the impact of CMAM programs, 

I focus on ratios in cumulative mortality in the year following measurement that are predicted by fitted 

models. In particular, I compare WHZ = –3.5, a representative value for WHZ-indicated SAM (WHZ-SAM), to 
a far healthier –0.5. Similarly, using the other recognized diagnostic for SAM, mid-upper arm circumference 

(MUAC), I compare MUAC = 11 to MUAC = 14. These ratios correspond to the most eye-catching numbers in 

Olofin et al. (2013) and similar studies. In addition, I make two narrower comparisons that may be more 
relevant for the operation of CMAM. In Demographic and Health Surveys (DHS) data for eight African 

nations, WHZ among children with SAM or moderate acute malnutrition averages –2.77.2 And 

(preliminarily) it appears that combined CMAM programs, which serve both MAM and SAM children, 

typically raise WHZ by a point. I therefore also report risk ratios for WHZ = –2.75 vs. –1.75 and, 

correspondingly, MUAC = 11.75 vs. 12.75. The meta-analytical results are gathered in Table 1. Predicted 

mortality ratios are statistically consistent across method and metric: about 3.5–5.5 for the wider 
comparison and 1.6–1.8 for the narrower one. 

It is possible that the causal impact of malnourishment on mortality in these settings was much smaller or 

larger than these associations suggest. That possibility is to a substantial degree an imponderable. That 
aside, to my mind, the largest tractable source of uncertainty that remains is about how best to extrapolate 

from these results from historical, untreated settings to modern, treated settings. It is not obvious that a 

child measured at WHZ = –2 in a historical setting is a good proxy for a child whose WHZ today is lifted by 
CMAM from –3 to –2. One virtue of the MIG model is that its microtheory could allow a more sophisticated 

simulation of treatment, e.g., as a sustained increase in health trajectory. Such simulation would require 

data on the distribution of anthropometric trajectories among children deemed eligible for treatment 
today. 

 
2 Countries are Burkina Faso, Chad, the DRC, Ethiopia, Kenya, Mali, Niger, and Nigeria. Average incorporates survey 
weights. 
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Table 1. One-year mortality ratio estimates after random-effects meta-analysis 

Model WHZ = –3.5 vs. –0.5 MUAC = 11 vs. 14 WHZ = –2.75 vs. –1.75 MUAC = 11.75 vs. 12.75 
MIG 5.61 [2.58, 12.18] 4.56 [1.96, 10.61] 1.81 [1.38, 2.36] 1.73 [1.32, 2.255] 
Probit 3.75 [2.22, 6.31] 3.51 [1.84, 6.70] 1.58 [1.31, 1.92] 1.56 [1.22, 1.99] 

Note: 95% confidence intervals in brackets. 

1 Previous literature 
Olofin et al. (2013) continues a lineage of research that pools data previously collected in multiple settings. 

1.1 Pelletier et al. (1994) 
Pelletier et al. (1994) gathers summary statistics on eight data sets like those in Olofin et al.: three from 

Bangladesh, and one each from India, Indonesia, Papua New Guinea, Tanzania, and Malawi. From the 
published reports, Pelletier et al. extracts sample sizes and death counts. The study disaggregates the 

statistics according to a once-common anthropometric classification, with groups demarcated at 60%, 70%, 

and 80% of the standard median weight-for-age. Those boundaries are about one 𝑧 score unit lower than 

those in more recent studies (i.e., 𝑧 ≈ −4, −3, −2).3 

Pooling across the eight studies, Pelletier et al., Table 3, finds a death rate 8.4 times higher among the most 

underweight children (weight-for-age 𝑧 ≲ −4 on the modern WHO standard) as compared to the least 
underweight (𝑧 ≳ −1.75). For lack of access to the underlying microdata, Pelletier et al. cannot perform 

survival analysis or other modeling of it. The regressions in the study are in a sense meta-regressions, as 

their unit of observation is a weight-for-age group within a given data set. 

1.2 Fishman et al. (2004) 
Fishman et al. (2004) is strongly influenced by Pelletier et al. The underlying studies now number ten and 

come from ten countries: Bangladesh, Ghana, Guinea-Bissau, India, Indonesia, Nepal, Pakistan, Philippines, 
Senegal, Sudan. Fishman et al. extends the earlier work by collecting the microdata. However, Fishman et al. 

does not directly model the data either. Instead, it computes the aggregates needed in order to follow the 

methods of Pelletier et al., while applying a more modern anthropometric classification, namely, weight-
for-age with 𝑧 score boundaries at −3, −2, and −1 under the WHO/NCHS 1977 standard. 

Fishman et al., Table 2.6, reports a risk ratio of 8.72 between most- and least-underweight groups for all-

cause mortality. Disaggregating by cause of death produces ratios ranging from 5.22 for measles to 12.50 

for diarrhea. 

1.3 Black et al. (2008) 
Black et al. (2008) continues the development from Fishman et al.—though precisely how is hard to 
determine because the description of the relevant methods is a few sentences (p. 247). For reasons not 

stated, Black et al. does not use data from Indonesia or Sudan.4 The paper says that “generalised linear 

mixed models were used,” but it does not say which ones; a good guess, since odds ratios are reported, is a 
logit model with study-level random effects. The study may also be the first to exploit access to the 

microdata by modeling it directly. The terse mention of GLMs seems to imply otherwise—to align the paper 

 
3 Six of the eight studies reference the WHO/NCHS 1977 medians (Pelletier et al. 1994, Table 1, note 1). The resulting 
60%, 70%, and 80% threshold correspond to 𝑧 = − 4.05, −2.9,  and −1.8 on the WHO 2006 standard now in use, 
averaging over age and gender values. The remaining two studies refer to the “Harvard” standard, for which the 
resulting modern 𝑧 values are −4.0, −2.8,  and −1.7. The WHO/NCHS standard is at 
web.archive.org/20050930101846/http://www.who.int/nutgrowthdb/reference/Weight_for_age.csv. The Harvard 
standard is at who.int/iris/bitstream/handle/10665/41780/WHO_MONO_53_(part4).pdf#page=46. 
4 In section 2 below, I explain why, despite obtaining the Indonesia data, I do not use it. 

https://web.archive.org/web/20050930101846/http:/www.who.int/nutgrowthdb/reference/Weight_for_age.csv
https://who.int/iris/bitstream/handle/10665/41780/WHO_MONO_53_(part4).pdf#page=46
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with previous studies, which fit GLMs only to aggregates.5 Yet Olofin et al., which shares two authors with 

Black et al., states that the latter fits GLMs “using individual-level data.”  

Other novelties in Black et al. include the use of the WHO 2006 growth standards to classify subjects, and 

the extension of the analysis from weight-for-age to height-for-age and weight-for-height. 

The results for weight-for-age are similar to those in Fishman et al., though generally a bit smaller 

(Fishman et al., Table 2.6; Black et al., Table 2, first panel). The odds ratio associated with weight-for-age 
𝑧 < −3 versus 𝑧 > −1 is 9.7. 

1.4 Olofin et al. (2013) 
Olofin et al. (2013) departs from previous work in several ways. It returns to the full 10 data sets in 

Fishman et al. It applies a method from survival analysis proper, meaning that it incorporates information 

not only about whether children die, but when. In particular, it runs Cox proportional hazards regressions. 
Where data availability allows, Olofin et al. incorporates aggressive control sets. And in order to blend 

results from different control sets and from different settings, it performs DerSimonian and Laird (1986) 

random effects meta-analysis. Although the results are now hazard ratios instead of cumulative mortality 
ratios, the pattern of results remains familiar. Under the WHO 2006 standard, the hazard ratio for children 

with weight-for-age 𝑧 below –3 is 9.40. The corresponding hazard ratio for WHZ < −3 versus WHZ > −1 is 

11.63. 

2 Data 
GiveWell requested data from the corresponding authors of Olofin et al. (2013) as well as of the underlying 
studies. We obtained data for five of the ten: Adair et al. (1993) from the Philippines, Garenne et al. (2000) 

from Senegal, Katz et al. (1989) from Indonesia, Mølbak et al. (1992) from Guinea-Bissau, and West et al. 

(1991) from Nepal.6 We also obtained the data for one study not in Olofin et al., that of Van den Broeck, 
Eeckels, and Vuylsteke (1993), which took place in what is now the Democratic Republic of Congo. That 

data set is in the public archive for Schwinger et al. (2019).7 

All six data sets supply repeated anthropometric measurement in a community-based cohort of young 
children, along with information on the occurrence and timing of death. The data sets differ in most other 

respects—sample size; which measurements were taken (height/length, weight, MUAC); precision of dates; 

richness of information on morbidity, cause of death, access to clean water, and demographics; and 

whether a randomized trial of vitamin A supplementation was ongoing within the sample. 

One limitation became apparent in the Indonesia data: dates of death are not recorded, only dates of the 

first researcher visit after death.8 Survival modeling ordinarily demands precise information on timing of 
failures. The corresponding author for Olofin et al., Goodarz Danaei, was uncertain about how this issue 

was handled in that analysis, and suggested generating random dates between the visits bracketing death. 

Rather than engaging in ad hoc imputation, I applied interval-censored variants of the Cox and MIG 
models.9 However, these often did not converge. Perhaps this is to be expected since the failure dates are 

 
5 Pelletier et al. (1994) “estimated with an unweighted regression (random effects model).” Fishman et al. “followed 
the procedures of Pelletier et al. (1993, 1994, 1995) and used the SAS Proc Mixed program” (p. 56). 
6 The Adair et al. (1993) data are online at dataverse.unc.edu/dataverse/cebu.  
7 search.nsd.no/en/study/NSD2709.  
8 Confirmed in email from Joanne Katz, Johns Hopkins University, November 17, 2021. 
9 For Cox regression, the method was that of Turnbull (1976), as implemented in the Stata command stintcox. For the 
inverse Gaussian model, the likelihood of death over the full spell is computed as the complement of the survival 
probability, in my Stata implementation of the model. 

https://dataverse.unc.edu/dataverse/cebu
https://search.nsd.no/en/study/NSD2709
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completely censored within a spell. For this reason, Indonesia data is not used with the Cox and MIG 

models. 

All WHZ scores are recomputed from primary data according to the WHO 2006 standard (WHO 2009, pp. 

302–03), using posted reference tables.10 The WHO and UNICEF (2009) define non-edematous SAM for 

children 6–59 months old as having WHZ < –3 or MUAC < 11.5 cm. The standard thresholds for MAM are 

one unit higher: WHZ = –2 and MUAC = 12.5cm. (“Global Acute Malnutrition,” or GAM, includes SAM and 
MAM.) 

Through the lens of survival analysis, the raw data define multiple episodes (spells) per child. Each episode 

begins with a measurement of WHZ or MUAC, the two SAM-diagnostic metrics. Each ends with the next 
measurement, usually 2–6 months later; or with death before the next researcher visit; or with a survival 

status report from an endline mortality survey. Together, the six data sets contain 89,142 episodes 

beginning with WHZ measurement between ages of 6 and 60 months, and 135,799 beginning with MUAC 
measurement; the two groups overlap since sometimes both metrics were collected. 22,372 children 

figured in the WHZ episodes and 40,253 in the MUAC episodes. 978 of the children were measured at least 

once with what are now SAM-prognostic values of WHZ (< –3) and 3298 with MUAC-SAM (MUAC < 
11.5cm). The 1,411 episodes following those WHZ measurements totaled 855 child-years in length and led 

to 99 deaths; for MUAC 5,114 episodes totaling 2,360 child-years led to 235 deaths. 

See Table 2 for details. Among the patterns in the table: 

• Deaths/episode and deaths/year indeed decline as anthropometric indicators increase. 

• Death rates in corresponding WHZ and MUAC categories are often reasonably similar11, the largest 

exception being the SAM category in the DRC, where the SAM mortality was approximately 10 times 

higher per episode or unit of time when indicated by WHZ than by MUAC. 

• The MUAC statistics are dominated by the large Nepal sample. 

• Average episode length is longest in Senegal. There, the researchers conducted a mortality follow-up 

survey at the end of 1989, five years after the initial two years of semimonthly measurement. 

• Children often changed categories from measurement to measurement. As a result, the sums of the 

numbers of children appearing in each category at some point exceed the values in the Total columns. 

Figure 1 renders the entire data set, in a sense. Children’s histories in WHZ or MUAC are plotted, and deaths 

are marked at the point of last measurement. We see that anthropometry can change quickly, perhaps 

because of measurement error, but tends to improve with age. In some settings, death rates clearly fall with 
age. 

 
10 github.com/WorldHealthOrganization/anthro/tree/master/data–raw/growthstandards. Only the Nepal and 
Senegal data indicate whether height or length was measured. Elsewhere, weight–for–length references are used for 
age < 2 years and weight–for–height references otherwise. 
11 This does not mean that WHZ and MUAC criteria are identifying the same children (Grellety and Golden 2018).  

https://github.com/WorldHealthOrganization/anthro/tree/master/data-raw/growthstandards
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Table 2. Numbers of subjects, episodes, and deaths by malnourishment metric 

  Weight-for-height z score (WHZ)   Mid-upper-arm circumference (MUAC, cm) 

  < –3 –3 to –2 –2 to –1 > –1 Total   < 11.5 11.5–12.5 12.5–13.5 > 13.5 Total 

Democratic Republic of Congo (Van den Broeck et al. 1993)             
  Subjects 113 470 1519 4146 4587   829 1858 2562 2542 4598 
  Episodes 137 694 2984 14160 17975   1490 3779 5724 7302 18295 
  Measurement age (months) 23.0 25.4 29.6 33.7 32.6   20.6 24.5 31.7 40.0 32.6 
  Years of risk 58.2 333 1526 7411 9328   705.8 1832 2951 3987 9475 
  Months/episode 5.1 5.8 6.1 6.3 6.2   5.7 5.8 6.2 6.6 6.2 
  Deaths 10 15 21 79 125   43 29 37 19 128 
  Deaths/episode 0.073 0.022 0.007 0.006 0.007   0.029 0.008 0.006 0.003 0.007 
  Deaths/year of risk 0.172 0.045 0.014 0.011 0.013   0.061 0.016 0.013 0.005 0.014 

Guinea-Bissau (Mølbak et al. 1992)             
  Subjects 23 80 230 612 664             
  Episodes 29 131 467 2647 3274             
  Measurement age (months) 21.6 20.8 21.5 24.7 24.1             
  Years of risk 8.9 49 186 1033 1277             
  Months/episode 3.7 4.5 4.8 4.7 4.7             
  Deaths 3 3 9 42 57             
  Deaths/episode 0.103 0.023 0.019 0.016 0.017             
  Deaths/year of risk 0.336 0.061 0.048 0.041 0.045             

Indonesia (Katz et al. 1989)             
  Subjects 115 419 1550 3514 3900             
  Episodes 139 619 2930 11398 15086             
  Measurement age (months) 25.7 25.5 30.0 33.9 32.7             
  Years of risk 40 170 817 3245 4272             
  Months/episode 3.5 3.3 3.3 3.4 3.4             
  Deaths 10 20 43 80 153             
  Deaths/episode 0.072 0.032 0.015 0.007 0.010             
  Deaths/year of risk 0.247 0.118 0.053 0.025 0.036             

Nepal (West et al. 1991)             
  Subjects 307 1095 2695 3772 5309   2241 6355 14039 22655 30511 
  Episodes 449 1841 5481 10538 18309   3348 10121 26478 64919 104866 
  Measurement age (months) 20.2 26.5 32.0 35.3 33.1   16.5 20.4 27.4 37.9 32.9 
  Years of risk 146.1 610 1811 3461 6029   1094.2 3349 8787 21304 34535 
  Months/episode 3.9 4.0 4.0 3.9 4.0   3.9 4.0 4.0 3.9 4.0 
  Deaths 16 16 18 13 63   146 89 87 89 411 
  Deaths/episode 0.036 0.009 0.003 0.001 0.003   0.044 0.009 0.003 0.001 0.004 
  Deaths/year of risk 0.109 0.026 0.010 0.004 0.010   0.133 0.027 0.010 0.004 0.012 

Philippines (Adair et al. 1993)             
  Subjects 202 757 1760 2444 2771             
  Episodes 408 1707 5896 13877 21888             
  Measurement age (months) 13.8 14.3 14.5 14.1 14.2             
  Years of risk 66.7 289 1002 2356 3714             
  Months/episode 2.0 2.0 2.0 2.0 2.0             
  Deaths 24 20 18 21 83             
  Deaths/episode 0.059 0.012 0.003 0.002 0.004             
  Deaths/year of risk 0.360 0.069 0.018 0.009 0.022             

Senegal (Garenne et al. 2000)             
  Subjects 218 673 1799 4094 5141   228 673 1503 4252 5144 
  Episodes 249 825 2635 8901 12610   276 820 2082 9460 12638 
  Measurement age (months) 19.5 21.3 27.4 34.3 31.7   18.6 18.7 23.5 35.1 31.7 
  Years of risk 535.0 1832 5981 20551 28899   559.6 1758 4518 22138 28973 
  Months/episode 25.8 26.7 27.2 27.7 27.5   24.3 25.7 26.0 28.1 27.5 
  Deaths 36 71 151 275 533   46 95 121 275 537 
  Deaths/episode 0.145 0.086 0.057 0.031 0.042   0.167 0.116 0.058 0.029 0.042 
  Deaths/year of risk 0.067 0.039 0.025 0.013 0.018   0.082 0.054 0.027 0.012 0.019 

Total                       
  Subjects 978 3494 9553 18582 22372   3298 8886 18104 29449 40253 
  Episodes 1411 5817 20393 61521 89142   5114 14720 34284 81681 135799 
  Measurement age (months) 19.1 21.8 25.5 29.3 27.8   17.8 21.4 27.9 37.7 32.7 
  Years of risk 855.4 3283 11323 38058 53520   2359.6 6939 16256 47429 72983 
  Months/episode 7.3 6.8 6.7 7.4 7.2   5.5 5.7 5.7 7.0 6.4 
  Deaths 99 145 260 510 1014   235 213 245 383 1076 
  Deaths/episode 0.070 0.025 0.013 0.008 0.011   0.046 0.014 0.007 0.005 0.008 
  Deaths/year of risk 0.116 0.044 0.023 0.013 0.019   0.100 0.031 0.015 0.008 0.015 

Notes: Samples restricted to episodes starting at age 6–60 months. Episodes begin with measurement and end with subsequent 

measurement, death, or survival report from endline mortality survey. Children who changed anthropometric groups over time are 
counted in more than one column. Deaths/year-of-risk figures slightly upward-biased because death curtails risk exposure periods. 
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Figure 1. Weight-for-height z (WHZ) and mid-upper-arm circumference (MUAC) paths, with deaths, all data sets 

 

3 Analysis in narrative form 
This section works to develop an analysis of the relationship between anthropometry and mortality in 

incremental fashion: starting with some basic facts about the data; explaining concerns that complicate 
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interpretation and extrapolation to modern treatment contexts; and sequentially introducing complications 

motivated by those concerns. 

3.1 Plotting deaths/episode 
To start, Figure 2 organizes information on the most basic outcome measure in the data set, the fraction of 

episodes ending in death. Each row in the figure shows statistics for one data set and anthropometric 
categorization, such as Nepal and WHZ.  As is standard, the WHZ spectrum is broken into four ranges with 

cut points at −3, −2, and −1. Correspondingly, the MUAC range is cut at 11.5, 12.5, and 13.5. For both 

metrics, the first cut point defines SAM and the second MAM. 

The left pane plots the rates from Table 2 along with 90% confidence ranges. Successive numbers are 

placed alternately above or below the data points to reduce collisions. WHZ and MUAC rows for same 

country are grouped, where applicable. Countries are sorted vertically by the mortality rate associated with 
SAM-WHZ —from 0.036 deaths/episode in Nepal to 0.14/episode in Senegal. 

Some of the ratios between the numbers in the left pane appear on the right: in each row, the risk rates for 

the three less-healthy categories are divided by that for the healthiest one. 

A few patterns emerge in the figure: 

• Mortality rates per episode tend to rise and fall together across anthropometric categories. For 

example, the Senegal data are the locus for the highest per-episode mortality in every WHZ category. 

• Where mortality is higher, mortality ratios are lower. On the logarithmic scales of the figure, the dots 

are closer together at the bottom in the left pane and closer to the left in the right pane. 

• Where mortality is higher, overall mortality differences are higher. Precisely because of the logarithmic 

scales, this fact is less obvious. But examining the numbers will confirm. The spread across the range 
for Nepal-WHZ, 0.036 – 0.0012 = 0.035, is much smaller than that in the high-mortality setting of 

Senegal, 0.17 – 0.029 = 0.14. 

The second and third facts plausibly suggest that in general the factors elevating child mortality in some 
settings partly interact with malnourishment to cause death, and partly do not. To the extent they do, they 

would increase risk differences and preserve risk ratios—e.g., if malaria causes death in strict proportion to 

malnutrition. To the extent that factors such as vehicular accident risk do not interact with 
malnourishment, they would raise risk in all anthropometric categories and reduce ratios across them. 

But part of the story may be about differences in how frequently researchers measured children for each of 

the data sets, as will be explored below. In the meantime, I will follow convention and focus on risk ratios, 
as in the right pane of Figure 2. 
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Figure 2. Deaths/episode by anthropometric group, and ratios thereof to rates for healthiest group 

 

Notes: Each row shows statistics for one data set and anthropometric categorization. The left pane shows the fraction of episodes 

leading to death, broken out by the same categorizations as in Table 2. The right pane shows the ratios of those risk rates to the risk 

rate in the healthiest group (WHZ > –1 or MUAC > 13.5). Degrees of confidence are indicated using standard errors clustered by 

subject. NPL = Nepal; PHL = Philippines; IDN = Indonesia; COD = Democratic Republic of Congo; GNB = Guinea-Bissau; SEN = 

Senegal. 

3.2 Complications 
Even if there were a compelling story favoring differences or ratios, the question of how best to extrapolate 
from untreated, historical settings to prospective treatment settings would be complicated. In a sense the 

question is one of interpretation: what do these numbers tell us about what we care about? Complications 

in interpretation tend to lead to complications in method, as they motivate mathematical elaborations to 
reduce, say, reverse causation. Here are complications that GiveWell has voiced or that I have arrived at in 

the course of analysis: 

1. Confounding. Low nutritional status may be a correlate of non-nutritional causes of death, as distinct 

from a proximate cause of death. This could lead to overestimation of the causal impact of 

malnourishment on mortality. 

2. Nonrepresentativeness. Children in these data sets could be older on average than the ones offered 
CMAM today, and older children with SAM are less likely to die (a fact confirmed below). 

3. Dummies are dumb?12 Representing nutritional status with dummies—0/1 indicators for broad ranges 

such as WHZ < –3—throws away information and results in a coarse representation of the statistical 

patterns. Interpreted mechanically, risk rates such as those in Figure 2 imply that moving a 

hypothetical child from WHZ = –4 to WHZ = –2.1 does exactly as much as good as moving from one 

WHZ = –3.01 to WHZ = –2.99, since both changes would formally shift the child from SAM to MAM. That 

 
12 Turn of phrase aside, the problem can also be cast as too few dummies. Finer categorization might suffice. 
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example is contrived, but for purposes of impact estimation GiveWell’s Stephan Guyenet suggested I 

assume SAM children see their WHZ increase by about 1.5 points (Table 8), and whether those 

increases in hypothetical children happen to cross one or two category boundaries could significantly 
affect the estimated risk reduction. 

4. Not incorporating timing information. Suppose a study reveals that after getting a positive result on 

some test for lung cancer, 10% of patients die within 6 months. How would we estimate the 12-month 
risk? A natural guess would be that doubling the period doubles the risk. Indeed, if it were further 

revealed that the deaths in the study occurred evenly across the 6 months, that would bolster the guess. 

On the other hand, if it turned out that all of the deaths occurred within a week of the test, that would 

undermine the guess. Evidently patients who survived that initial, fraught period were safer thereafter. 

 In addition, timing information can give insight into causality—though I am uncertain about how to 

apply this idea in the present context. If statisticians find a burst of deaths in the days following car 
accidents, that tells a compelling causal story. If they merely find that people who are in car accidents 

die more in the following decade, it becomes more plausible that propensity for collisions mostly 

indicates other risk factors. 

 The data sets at hand do tell us not only whether deaths occurred within set periods, but when. The 

simple averages in Table 2 and Figure 2 discard this information, and may lead to worse extrapolations 

to other time frames. Survival analysis methods would allow us to incorporate timing, a standard 
example being the Cox proportional hazards model used in Olofin et al. 

 Caveats: As mentioned, the Indonesia data set lacks timing information. And timing information in 

other data sets could be inaccurate, especially if it is based on parents’ recall of events that happened 

months or years back.13  

5. Risk ratios vary over time. If, as in the lung cancer hypothetical, the risk of death after SAM diagnosis 

varies over time, then the death rates on the left side of Figure 2 are not directly comparable across 
countries. The low risks in the Philippines, for example, come from tracking kids for just two months 

before the next measurement while the high death rates in Senegal are for episodes lasting more than 

two years on average. 
 One might hold out hope that the risk ratios in the right pane of the figure are comparable despite 

differences in follow-up frequency. Indeed, the proportional hazards model is called that precisely 

because it assumes as much.14 For example, perhaps after SAM diagnosis the moment-to-moment risk 
of death (hazard) first rises for a while and then falls (among survivors). And perhaps it does the same 

in children who are measured as above SAM thresholds, if with lower amplitude (though that sounds 

unlikely). Then while the risks varied, the risk ratios would not. The prospect is attractive because it 
can simplify analysis. But the assumption of proportional hazards is normally made for mathematical 

 
13 “Age is the most problematic of the variables. In most Western cultures it is rounded down to the nearest completed 
month, in other cultures age is rounded up to the next highest month. In most developing countries there is no birth 
registration and birthdays are not celebrated; consequently, as a child ages the actual age becomes increasingly vague 
in the memory of the mother. Age is then approximated by using a calendar of local memorable events and the mother 
asked to remember to which event the birth most closely approximated. These calendars are normally quite crude 
and are not capable of identifying the actual month of birth. The questioning takes some time and is often 
administered in a perfunctory way, particularly if the survey team is tired or asked to complete excessive interviews 
in a single day.” (Grellety and Golden 2016, p. 5) Though this is about time of birth, much of it applies to time of death. 
14 Technically, the proportional hazards assumption is that risk ratios are the same at each age, not each time since 
last measurement. However, in the special case where children are measured at the same ages, the distinction 
evaporates, and the proportional hazards assumption implies risk ratios are constant with respect to time since 
measurement. 
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convenience, not biological realism.15 In our case, it seems unlikely that the time profile of death among 

well-nourished children would be a scaled copy of that for SAM children. 

 Another way of describing the situation: the statistics in Figure 2 are about different risks. Since the 
Philippines data collectors measured children every two months, at any given moment in those 3,714 

child-years of risk exposure (see Table 2) a child was on average measured about one month 

previously. By the same reasoning, the Nepal statistics shed light on the risk of death conditional on 
having been diagnosed with SAM a two months ago. And so on. There is no strong a priori reason to 

believe that cross-group ratios of different risks are the same. 

In responding to these concerns in the analysis, I will start with those that require the least methodological 

complication, in order to maintain accessibility. 

3.3 Risk ratios vary over time 
I see two main approaches to increasing the comparability of results from data sets with various follow-up 

frequencies. One, complicated, is to devise a mathematical model that explicitly represents how risks 

evolve over time, then calibrate it to the data. The other is to homogenize the data so that all subjects are 

followed the same amount of time. This throws away most of the information in the data set, but is more 

transparent. 

Sticking with the simple approach here, I reorganize the data so as to represent each child with a single 
spell starting with the first measurement after reaching six months of age and running one year. Children 

are only retained in the data if they are followed for at least that long, or die before then. Subsequent 

measurements within these 12 months are ignored, as is any information pertaining to events happening 
after. I start at six months because it is the earliest age at which children can be diagnosed with GAM under 

WHO guidelines, and because malnutrition most endangers the youngest children. I follow children for a 

year because in discussions with GiveWell staff, cumulative one-year mortality has been favored as a 
benchmark, and because 12-month timing meshes well with the approximate 2-, 3-, 4-, and 6-month 

cadences in the raw data.16 

Figure 3 shows the mortality averages and ratios in these “single-spell” data sets. I note that: 

• Cumulative risks (left pane) all increase from the previous figure, which essentially they must since the 

subjects are exposed to risk longer, except in Senegal. 

• Just as in the cross-country comparisons within Figure 2, the increased risks from the data 

restructuring tends go hand in hand with lower risk ratios. The highest ratios in Figure 2, for Nepal and 

the Philippines, are replaced with ones half as much or less. This suggests that the proportional hazards 

assumption does not hold in all the data sets. 

• After the single-spell restructuring, risk ratios are less varied. It appears that taking steps to address 

timing effects can indeed produce results that are more consistent across data sets. 

 
15 “In general, there are (at least) two forces that might lead to diminishing the effect of a covariate, namely ageing of 
measurements and frailty….Hence one should clearly be cautious in assuming a constant effect of a covariate over 
time as is done in the proportional hazards setting. In regression modeling for survival data, there is typically too little 
emphasis on changes in effects over time, and hence one gets an unnecessarily limited understanding of the process. 
There is in general no reason why effects should be constant over time.” (Aalen, Borgan, and Gjessing 2008, p. 163) 
16 The lack of timing information in the Indonesia data set makes it impossible to estimate whether deaths in spells 
bracketing the one-year mark occurred before or after that moment, thus whether the child survived a full year. 
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Figure 3. Deaths/episode by anthropometric group, and ratios thereof to rates for healthiest group, one-year spells 

 

3.4 Nonrepresentativeness (in age) 
Those one-year spells begin at an average age of 23.6 months for WHZ and 25.8 months for MUAC. But the 

children recruited into CMAM today might be younger. In a recent field trial in Burkina Faso for children 6–

59 months, the average age of those recruited for treatment (having oedema or MUAC < 12.5cm) was just 

14.9 months (Daures et al. 2020, Table 2). 

To increase comparability on age, I narrow the samples behind the previous figure. Episodes are retained 

only if they begin before age 36 months, instead of 60 months. This reduces average age at measurement to 

15.7 months for WHZ and 18.4 for MUAC. 

The impacts of the change on risks are subtle. See Figure 4. The major difference I see between Figure 3 and 

Figure 4 is that death rates among the well-nourished rise a bit, causing the risk ratios, which take them as 

a reference, to fall slightly. 

Because of the modest effect and the further loss of sample, I will dispense with this restriction in what 

follows. 

 



  13 
 

 

Figure 4. Deaths/episode by anthropometric group, and ratios thereof to rates for healthiest group, one-year spells starting before age 
36 months 

  

3.5 Confounding 
The remaining concerns introduce enough complexity that they can only be addressed by imposing further 

assumptions, which brings us to statistical modeling. For example, to address confounding we may wish to 
“control for” observed socioeconomic factors. This usually requires assuming that the factors have a 

relationship with mortality risk whose mathematical structure is known, and thus that we are only 

ignorant of its parameters. The parameters are then estimated by fitting the model to the data. 

To maintain continuity with the analysis to this point, I keep the single-episode-per-child data set but 

switch to a probit model, which is standard for binary outcomes. A probit model for death in each of these 

samples, whose regressor set consists solely of dummies for the four WHZ or MUAC ranges, leads to 
probability predictions identical to those in Figure 3—so those are not plotted again. 

But on that foundation, we can build a more elaborate structure. To the probit regressions I add controls 

for age, gender, and, where defined, the Olofin et al. control sets, which are described here in Table 3. (For 

lack of data, Olofin construct no controls for the DRC and Senegal data sets.) After fitting the model to each 

data set, I generate predictions of mortality risk for each WHZ or MUAC category by setting all other 

variables to their sample means. I drop the data for Indonesia because the software was unable to generate 
probability predictions, evidently under the combined stresses of sample shrinkage (to one-year spells) 

and addition of many controls. These specification choices are meant to minimize my own exercise of 

discretion, by accepting the most obvious defaults. 

The results appear in the familiar format in Figure 5. The departures from Figure 3 are modest, and I see no 

strong pattern in them. 
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Table 3. Olofin et al. description of control sets copied in present analysis 

Country Covariates  

Guinea-Bissau Ethnic group 

Indonesia Mother’s education, mother’s age, household drinking water source, family size   

Nepal 
Household assets (household ownership of: bari, khet; number of household owned:  bicycles, 
cattle, goats, radios; materials used for house walls and roof), mother’s education, mother’s 
age, household latrine ownership, household caste 

Philippines 

Sanitation variables (i.e., animals kept under the house, domestic animals kept inside the 
house, condition of food cooking area, condition of food storage area), whether or not the 
child’s mother works for pay, source of baby’s drinking water, household water supply 
(availability of: boreholes, dug wells, piped supply, springs) 

Source: Olofin et al. (2013), Table S1. 

 

Figure 5. Predicted deaths/episode by anthropometric group, and ratios thereof to rates for healthiest group, one-year spells, probit 
model with Olofin et al. controls where available 

 

3.6 Smarter than dummies? 
The standard alternative to a set of dummies is a set of polynomial terms in the underlying continuous 

variable—typically first- or second-order, meaning linear or quadratic. Polynomial terms have the 

advantage that to the extent that they capture the functional relationship between dependent and 

independent variables, they can allow more precise characterization of fit. They could more properly 

distinguish between a move from WHZ = –4 to WHZ = –2.1 and one from –3.01 to –2.99. 
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Figure 6 documents an exploration of this option in the context of the single-spell data sets. The figure 

contains one plot for each row in the previous figures.17 Each plot in turn has: 

• A horizontal axis for WHZ (from –4 to 0) or MUAC (9.5 to 14.5cm). 

• A vertical axis for average mortality. 

• Black dots for each child, showing the child’s initial anthropometry and subsequent survival or death. 

The deaths appear along the top and the survivals along the bottom. Noise is added to the placement of 
the dots to better convey the density of the data. 

• Grey, wiggly lines that are smoothed fits (moving averages) of the 1’s and 0’s; they represent death and 

survival rates as a function of WHZ or MUAC. 

• White bands for the 95% ranges of the smoothed fits. 

• Blue step functions that show the mortality rates predicted in each anthropometric group by a fitted 

probit model using the standard four dummies and no controls. The heights of these steps are the 

numbers in the left pane of Figure 3. They are the average numbers of deaths among the children 
whose dots are directly above or below them. 

• Teal curves showing the mortality predictions from a fitted probit model that replaces the four 

dummies with a single, continuous WHZ or MUAC variable. 

• Gold curves that do the same for a quadratic probit model. 

One can see that smoothed fits often behave strangely near the edges, especially if the data is sparse there. 

The plot for Indonesia, for example, shows falling risk as WHZ declines below −3, because there happen to 

be almost no deaths in that range in the single-spell data. Not much should be made of such end effects. 

To my eye, the probit/quadratic model matches the smoothed fits no worse than the probit/dummies 

model does, even while avoiding the somewhat garish “staircase” assumption that impacts are the same 
within set ranges. One could also explore models with more dummies—for ranges widths of 0.5 or 0.25. 

But these would introduce more parameters and consume more degrees of freedom in the fitting; and the 

coefficients for those in sparsely inhabited categories would be estimated with great uncertainty. 

I therefore prefer the quadratic model for purposes of impact estimation. 

Having made that judgment, I return to the model in the previous subsection—a probit model for one-year 

spells, including controls—and mutate it to a quadratic specification. The structural change forces me to 
replace the anthropometric ranges used to this point, such as WHZ < –3, with exact values. Since the 

boundaries between the four standard WHZ ranges are –3, –2¸ and –1, it seems least arbitrary to pick the 

values –3.5, –2.5, –1.5, and –0.5 to stand in for the ranges. Corresponding values for MUAC (adding 14.5) 
are 11, 12, 13, and 14.  Figure 7 shows the risks and risk ratios at those points as predicted by the fitted 

quadratic probit model with controls. Once again the methodology changes more than the results. 

 
17 The figure is inspired by graphs that Megan Higgs showed me. 
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Figure 6. Mortality vs. anthropometry in single-spell data sets, with smoothed fits and probit fits with dummies, linear, and quadratic 
specifications 

 

Notes: Unit of observation is the one-year episode starting from a child’s first measurement between age 6 and 60 

months. For legibility, data for WHZ < –4 or MUAC < –10.5 are omitted. For the smoothed fits, the Epanechnikov 

kernel is used with a bandwidth of 0.25. 
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Figure 7. Predicted deaths/episode by anthropometric group, and ratios thereof to rates for healthiest group, one-year spells, probit 
model with Olofin et al. controls where available and anthropometric entered quadratically, with WHZ = –3.5, –2.5, –1.5, –0.5 or MUAC 
= 11, 12, 13, 14cm 

 

3.7 Not incorporating timing information 
The last concern addressed in this section is the disuse of information about the timing of death. 

The foundational tool in survival analysis, the Kaplan-Meier survival curve, is constructed by tracking a 

pool of subjects over time, and in each unit of time computing the fraction of subjects who started that bit 

of time and made it to the end. The survival fractions are multiplied together to give cumulative survival 

rates over longer periods. Subtracting the moment-by-moment or cumulative survival probabilities from 1 

gives the empirical hazards and the cumulative mortality rates. 

Figure 8 and Figure 9 show Kaplan-Meier mortality and hazard curves for the original, multi-spell data sets, 

defining time by child’s age. For legibility, the confidence intervals are narrowed to the 50% level. And 

because the hazard rates are volatile day-to-day—deaths are rare—they are smoothed, according to 
defaults in Stata. The vertical mortality scales are in logarithms; this way, if ratios in cumulative risk or 

hazard are constant, curves will move in parallel. 

Cumulative mortality for the SAM groups (in black and grey) is strikingly high, exceeding 50% in some data 
sets. Bear in mind though that these high risks are faced only by hypothetical children who always qualify 

as SAM, whereas children typically jumped between anthropometric categories. 

Some groups of hazard curves do seem to move in parallel, notably those for Senegal. Others do not, a 
prime example being in the Nepal/MUAC data set that is by far the largest. Tentatively, I suggest a 

connection between these results and the changes that occurred when moving from multi-spell to single-
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spell data (from Figure 2 to Figure 3), which I also suggested pointed to a violation of the proportional 

hazards assumption. In Senegal, for example, the highest-to-lowest risk ratios changed only slightly with 

data restructuring, from 4.7 and 5.7 for WHZ and MUAC to 4.6 and 5.5 while the Nepal numbers plunged 
from 28.9 and 31.8 to 11.7 and 14.8.  

Despite some continuing doubt that the proportional hazards assumption holds in all the data sets, I next 

run Cox proportional hazards regressions, which assume that it does. The reasons: 1) perfectionism in the 
analysis of non-experimental data leads to nihilism; 2) the method is standard; and 3) the method is used in 

Olofin et al., which has influenced GiveWell’s assessment of CMAM and thus is worth replicating.18 

Cox regressions estimate hazard ratios—not absolute hazard rates, nor ratios in cumulative failure rates 
over stretches of time. I therefore present the Cox results in the format of the right panes of earlier figures. 

See Figure 10. I include the Olofin controls and, as reported in the top and bottom halves of the figure, run 

regressions on the both the multispell and single-spell data. The former constitute my closest replication of 
the WHZ regressions in Olofin et al. (2013, Table S2(C)). Original and replication are recognizably similar: 

for example, the highest-to-lowest hazard ratio for the Philippines is 39.0 there and 33.3 here—in both 

cases the largest of all. 

The Cox hazard ratio estimates are remarkably similar to the earlier cumulative mortality estimates: 

compare the upper half of the new figure with the right pane of Figure 2 and lower half with the right of 

Figure 3—or, even better, Figure 5, which also comes from regressions with controls. The match is 
especially good in the latter case. 

Figure 8. Kaplan-Meier failure curves by country, anthropometric indicator, and four-way grouping, with 50% confidence intervals 

 

 
18 “Our starting point to estimate mortality among untreated malnourished children comes from Olofin et al. 2013 .” 
givewell.org/international/technical/programs/combined-protocol-community-management-acute-malnutrition. 

https://www.givewell.org/international/technical/programs/combined-protocol-community-management-acute-malnutrition#footnote32_0b3kbwy
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Figure 9. Smoothed hazard rates per month by country, anthropometric indicator, and four-way grouping, with 50% confidence 
intervals 
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Figure 10. Cox hazard ratio estimates on multispell and single-spell data sets, including Olofin controls where available 

 

3.8 Summary 
This section began by computing simple mortality rates and ratios thereof. Motivated by concerns about 

how those simple statistics could mislead if extrapolated directly to treatment settings, it introduced 
elaborations: moving to one-year spells, adjusting for age by restricting the sample, moving to a probit 

model in order to introduce controls, exploring alternatives to dummies for representing anthropometry, 

applying non-parametric and parametric methods from survival analysis. 

Only one of the changes made much difference: moving to one-year spells. This is good to know. But it also 

poses a mystery. By arbitrarily modifying the data sets, we can raise and lower the risks and risk ratios for 

various anthropometric groups. We could, for example, use 6- or 18-month spells instead of 12-month 

ones, or stay with multi-spell data but merge successive pairs of episodes. What then does any particular 

set of results mean? 

It is not clear what sort of real-world processes would generating data that would behave in this way. That 

is, we lack theory. And without a theory that roughly explains the evidence, it is harder to decide how to 
extrapolate to modern treatment contexts. 
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In the next major section, I will describe a theory, one that, unlike the Cox model, represents the data 

generating process in way that gives an explicit role to the passage of time. If the model is exactly correct, 

then estimates based on calibrating it to real data will be nearly impervious to changes in episode length. 
Inevitably, the model is simplistic and wrong, but it does prove to be more stable than the Cox model, or 

simple averages for that matter, while still allowing incorporation of age and other controls and quadratic 

dependence on anthropometry. 

4 The problem of unobserved heterogeneity 
It is tempting to posit, as the Cox model does, that risk ratios are constant over time. Sometimes that makes 

sense: if for reasons of geology, the probability of being hit by lighting is twice as great in Oklahoma as in 

Vermont, that is probably true over minutes and millennia. 

But in general there is a good reason to expect that risks and risk ratios change: unobserved heterogeneity. 

Within an experimental treatment group, for example, a new drug might work better for some people than 

others, perhaps because of genetic differences. Then, to put it crudely, after some time has passed, the 

people who are going to die will have already died. The risk of death in what remains of the treatment 

group will fall. As a result, the drug trial will return different hazard and cumulative risk ratios if run for a 

month than if run a year. 

It is perhaps intuitive to conceive of two forms of unobserved heterogeneity. The first, frailty, was just 

exemplified. Factors distinct from those measured by researchers influence outcomes; subjects who appear 

the same in the data in fact differ in crucial ways; among same-seeming subjects, those put at most risk by 

these unobserved factors exit the risk pool first. 

The other form of unobserved heterogeneity is aging of measurement. It stands to reason that the risk 

associated with a red-zone reading on a MUAC measurement taken today speaks more to a child’s risk of 

death now than one taken a year ago. 

Though the two forms of unobserved heterogeneity look different, deeper down they are the same. Old 

MUAC measurements are associated with lower risk ratios because after those old measurements are 

taken, children’s anthropometric statuses evolve in different directions, for reasons unobserved by the 
researcher. That is frailty by another name. 

We have already seen signs of measurement aging. Converting data sets with typically 2–6-month episodes, 

thus typical time since measurement of 1–3 months, to data sets with 12-month episodes significantly 
reduced risk and hazard ratios, whether working with simple averages or probit or Cox models with 

controls. 

Here I present further evidence of such effects. 

The first demonstration is motivated by the idea that if the proportional hazards assumption is indeed 

violated in real data, perhaps proportional hazards regression can be salvaged as a practical tool if we 

apply it to narrow time windows, within which the hazard ratio will change less. In this spirit, I run a Cox 
regression that models the hazard of mortality only in the first month after a child’s height and weight were 

last measured. Then I shift the window to the second month, and so on.19 I pool the data from the five 

countries with timing information and stratify the model by country. 

 
19 Regressions are stratified by country. Standard errors are clustered by individual. Spells leading to failure before 
the start of a window are dropped. Spells leading to failure after the end of a window are recoded as non–failures. 
Because of a tendency to degeneracy in these restricted regressions, all controls are dropped to aid convergence. 
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Figure 11 shows the resulting estimates and confidence bands for the hazard ratios for WHZ < −3 (SAM) 

vs. WHZ >  −1. In the first month after measurement, the hazard is 35 times higher in the SAM group. The 

ratio falls as the window shifts to months 2–5. 

For a second demonstration, I focus on the data from the Philippines study, the one in which children were 

measured at the highest frequency: every two months for up to two years. I run a Cox regression on the full 

sample. Then I drop every other observation for each child, to simulate them being measured every four 
months instead of every two, and rerun the regression. I continue the pattern by retaining only every third 

observation, and so on. Again, the hazard ratios start high and fall as the time span lengthens.20 (See Figure 

12.) 

Finally, I extract and rearrange some of the multispell Cox results that were reported in the top half of 

Figure 10. The novelty is to plot the hazard ratios as a function of average episode length (for survivors). 

For legibility, I take the hazard ratios for the SAM category only, and focus on WHZ. (The WHZ and MUAC 
results would collide since they would have the same 𝑥 coordinate and similar 𝑦 coordinates.) See Figure 

13.21 Again, where children are followed up on more quickly, hazard ratios appear higher. 

All of these results suggests that frequency of follow-up is a major determinant of apparent cross-country 
differences in hazard ratios.22 It appears that much of the cross-country variation within published meta-

analyses is an unrecognized artifact of aging of measurement. 

 
20 Regressions as described in note 19, except restricted to the Philippines. The hazard ratio of 126 differs from the 
corresponding 39 in Olofin et al. (2013), Table S2(C) for reasons I cannot explain; the corresponding author of Olofin 
et al. did not share the code for that study. However, the replication squares with the original more than it may appear 
in that the natural domain for Cox hazard ratios is logarithms, and in logarithms 39 and 126 are less distant. 
Moreover, among the Olofin et al. country–specific weight–for–height results, that for the Philippines is distinctly 
highest. 
21 Average is of spell lengths not ending in death. 
22 The average spell length in each country reflects the precise timing of visits, of any deaths between visits, and, in 
some cases, of an endline mortality survey. 

https://s3-eu-west-1.amazonaws.com/pstorage-plos-3567654/1070110/Table_S2.docx?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAI5TSI4CIU73QDJOQ/20211208/eu-west-1/s3/aws4_request&X-Amz-Date=20211208T163812Z&X-Amz-Expires=10&X-Amz-SignedHeaders=host&X-Amz-Signature=8005971193a88482b98fdf3881bbbcf7783fcb1a52bd74daa783ae94bd9a3a7f
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Figure 11. Results from five-country Cox regression when shifting window within which failure is modeled 

 

Figure 12. Results from Philippines Cox regression retaining only every nth bimonthly observation for each child, 𝑛 = 1,2, … 
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Figure 13.  Cox regression results versus average spell length in five countries with data 

 

5 Mixture Inverse Gaussian (MIG) modeling 
This section introduces and applies an alternative to the Cox proportional hazards model, one that posits 
an explicit microtheory for the evolution of health over time. Use of the model has three potential benefits: 

• To the extent that the model captures the patterns in the data, it will be robust to aging of 

measurements, producing more-comparable results from data sets with various follow-up frequencies. 

• Once calibrated to data, the model can generate predictions of cumulative risks as well as hazards for 

any time point since measurement, the first being closer to the outcome of interest in assessing CMAM. 

And it allows predictions of absolute risks, not just ratios between risks. 

• Because it contains a mathematical theory for the evolution of health, it could provide a firmer basis for 

extrapolation of results from historical settings to prospective treatment settings. A weekly feeding 

program, for example, could be represented in the model as constant upward pressure on the health 

level, and the consequences for mortality could be simulated from there. This is not possible with 

models such as the probit and Cox that lack such foundation. 

I chose the model after recognizing the measurement aging effects in a graph like Figure 13. The 

pervasiveness of unobserved heterogeneity and the consequent threat to the proportional hazards model 
are leitmotifs in the Aalen, Borgan, and Gjessing (2008) textbook I was reading. A quick search for practical 

alternatives—in this book and in the Stata manuals—surfaced only one that appeared to meet the following 

criteria: 

• Explicit representation of the role of time. This seems needed for robustness to cross-study differences 

in follow-up frequency. 
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• Tractable formulas for the survival probability and failure time distribution. Most stochastic models one 

can write down do not have closed-form solutions, and can only be fit through a computationally 

intensive and algorithmically complex use of simulation (Hurn, Jeisman, and Lindsay 2007). Random-

effects shared frailty models are common, but these require the practitioner to identify and observe the 

dimension of shared frailty, such as the school or province. In the case at hand, I see no compelling 

candidates—especially in the DRC and Senegal data sets, which include essentially no covariates. 

The model meeting these criteria is developed in Aalen (1994) and reintroduced and applied in Aalen, 
Borgan, and Gjessing (2008), chapter 10. The drive for tractability shapes the model, giving it a straitened 

(and straightened) character. 

5.1 The MIG model 
In the model, the state of a given individual at a given time is characterized by the abstract variable 

“health.” We do not observe “health” except in that if it falls to zero, the individual dies. In the simplest 
version, everyone’s health starts at the same level. From there, each individual’s health tends to rise or fall 

at a constant rate during an episode. Yet two components of randomness enter. First, the slopes of the 

individual health trajectories are not all the same; rather they are randomly assigned from a normal 
distribution defined by some average and variance. This variance constitutes the unobserved 

heterogeneity. Second, all individuals experience moment-to-moment random changes in their health 

levels, which accumulate—what is called Brownian noise. 

This data generating process may be termed “Brownian motion with random drift.” The probability 

distribution it produces for time of death is the Mixture Inverse Gaussian (MIG). So I call it the MIG model. 

Formally, in Brownian motion with random drift, individual 𝑖’s health, 𝑥𝑖(𝑡), starts at 𝑐, at time 0: 

𝑥𝑖(0) = 𝑐 

Health evolves according to the stochastic differential equation 

𝑑𝑥𝑖 = −𝜇𝑖𝑑𝑡 + 𝑑𝐵𝑖 if 𝑥𝑖 > 0
𝑑𝑥𝑖 = 0 if 𝑥𝑖 = 0

  

𝜇𝑖 is the individual-specific slope (drift) that characterizes the individual’s trajectory. The minus sign on 𝜇𝑖 
establishes the convention that higher values of the parameter reduce health, i.e., increase the probability 

of death. 𝑑𝑡 represents an infinitesimal increment of time. 𝑑𝐵𝑖 represents an infinitesimal increment of 

Brownian noise, which is a fractal random walk and has cumulative variance of 𝜎2 per unit time. Because 
health, 𝑥𝑖 , is not observed unless it hits 0, the scaling of the 𝑥 variable is arbitrary and immaterial. We 

normalize scale by setting 𝜎2 = 1. 

The average slope of each individual’s health trajectory, 𝜇𝑖 , is drawn from an another, independent normal 

distribution, with mean 𝜇 and variance 𝜏2: 

𝜇𝑖 ∼ 𝒩(𝜇, 𝜏2) 

𝜇𝑖 is constant for each individual in each episode, but can change arbitrarily when a new episode starts. 

The boundary at 𝑥𝑖 = 0 is “absorbing”: any path reaching the boundary remains there forever, since death 

is irreversible. 

Three parameters thus shape the stochastic process: 𝑐, 𝜇, and 𝜏2. In terms of those parameters, Aalen 
(1994, p. 240) derives formulas for the probability of survival and the timing of death—in mathematical 

terms, the probability that 𝑥(𝑡) > 0 given 𝑡, and the probability density over 𝑡 that 𝑥 first hits 0 at time 𝑡. 
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To be precise, the probability distribution for 𝑥 = 𝑥𝑖(𝑡) when 𝑥 > 0 is 

𝜓(𝑡) = (1 − 𝑒
−

2𝑐𝑥
𝜎2𝑡) 𝜙(𝑥; 𝑐 − 𝜇𝑡, 𝜎2𝑡) 

where 𝜎2 = 1 and 𝜙(⋅;⋅,⋅) is the normal density with indicated mean and variance. Since 𝑥 is not observed, 

the above equation is not feasible and is not used in model fitting. However, its integral in 𝑥 over (0, ∞) is 
the survival probability at time 𝑡, which does correspond to an observable event. The probability works out 

to 

𝑆(𝑡) = Φ(𝑐 − 𝜇𝑡; 𝜏2𝑡2 + 𝜎2𝑡) − 𝑒
2

𝑐
𝜎2(

𝑐
𝜎2𝜏2+𝜇)

Φ (−𝜇𝑡 − 𝑐 − 2
𝑐

𝜎2 𝜏2𝑡; 𝜏2𝑡2 + 𝜎2𝑡) 

where Φ(⋅;⋅) is the cumulative normal density with indicated variance. And the negative of the time 

derivative of that is the temporal distribution of death: 

𝑓(𝑡) =
𝑐

𝑡
𝜙(𝑐 − 𝜇𝑡; 𝜏2𝑡2 + 𝜎2𝑡) 

The latter two equations are used in model fitting, the first for survivors and the second for non-survivors. 

By definition, cumulative mortality and instantaneous hazard rates are then 

𝐹(𝑡) = 1 − 𝑆(𝑡) (1) 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 (2) 

The three model parameters can vary by individual, through dependence on observables such as WHZ and 

age at measurement. For example, I model with 

𝑐 = 𝜷𝑐
′ 𝐳 

𝜇 = 𝜷𝜇
′ 𝐱 

𝜏2 is the same for all individuals 

𝜷𝑐 and 𝜷𝜇 are parameter vectors for estimation, along with 𝜏2. Recall that 𝑐 is the starting point and 𝜇 the 

average rate of health progression or regression from there. The vector 𝐳 contains, in addition to a constant 

term, one or more variables that depend on WHZ or MUAC, such as those variables and their squares. 𝐱 

includes a constant, as well as gender, age at last measurement, and potentially additional controls defined 
by Olofin et al. (see Table 3 below).23 𝐱 also contains the anthropometry in 𝐳 in order to allow for regression 

to the mean, for example, because of measurement error. 

The overall structure—with initial health depending on a diagnostic, subsequent progression depending on 

a larger set of potential ongoing influences, and the slope variance 𝜏2 held the same for all individuals—

largely follows the pattern in the application to oropharyngeal cancer in Aalen, Borgan, and Gjessing 

(2008), §10.3.8. 

The model is fit with Maximum Likelihood using a Stata program I wrote. The unit of observation is the 

child-episode. As noted, a child’s health trajectory 𝜇𝑖 can vary from one episode to the next; but it will vary 

less to the extent that the model fitting associates 𝜇 with slow-changing variables such as ethnicity and 
household size. 

 
23 I initially fit with ln 𝑐 = 𝜷𝑐

′ 𝐳 to guarantee that trial values of initial health are positive, then switch to the un-logged 
model and refine. 
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Notably, this model departs from many survival models in measuring time from the beginning of a spell—

the time of last measurement—rather than from a universal anchor such as time of birth or marriage. If two 

individuals were last measured two months ago, but at different ages, their data plays the same role in the 
MIG model: contributing to the assessment of risk two months after measurement. In typical applications  

of Cox and Kaplan-Meier methods, such as in section 3.7, the experiences of the two individuals would 

contribute to risk assessment at their respective ages. By the same token, the MIG model does not exploit 
the multispell nature of the data at hand. Each episode of measurement and follow-up on a given child is 

treated in parallel, with no adjustment or exploitation of the fact that the episodes are for the same child. 

Those comments on the structure of the model are subject to two caveats. First, as noted, age does enter the 

MIG model applied here in another way: it appears in the 𝜇 equation as a determinant of individual health 

trajectory. Second, standard errors can be clustered by subject, and here are. 

5.2 Illustration 
A sequence of graphs helps make the ideas in the MIG model more concrete. Figure 14 shows 99 sample 

paths from a Brownian motion with random drift, run for a simulated year. For this illustration, all the 

paths start at 𝑐 = 1.82, a value that arose when I calibrated a version of the MIG model to the data from 

Guinea-Bissau; the value is abstract, but in context stands for children who have been diagnosed with WHZ-

SAM. From the shared starting point, the paths diverge along trajectories that indeed resemble straight 
lines, with a bit of wandering noise. The average slope is set to be positive, at 𝜇 = 0.86, so that most 

individuals improve with time. But the standard deviation of the slopes is 𝜏 = 0.57, large enough to 

produce a minority of paths that head downward, some to death.24 Notably, most of the deaths happen 
within the first few months. Thereafter mortality in the surviving population falls, because most of the 

survivors have positive trajectories. 

Figure 15 shows the distribution that arises from running 10,000 paths instead of 99. Shading boundaries 
mark the 5th, 10th, etc., percentiles. The dark line shows the median. The lowest band plotted, for the 5th to 

10th-percentiles, heads to death, as does part of the next band. 

Figure 16 surfaces this aspect, showing the cumulative mortality rate. The black curve indicates the result 
for the 10,000-path simulation while the light blue shows the prediction from theory (equation (1) above). 

Just as in the Kaplan-Meier curves in Figure 8, cumulative mortality tends to plateau. 

Next, I posit the existence of a second group of individuals, which differs from the first only in starting at a 

health level corresponding to children with WHZ > −1. Figure 17 augments the previous graph with 

corresponding curves for this healthier group. 

Next, I take the ratios in cumulative mortality across the two groups, a measure of the elevation of risk from 
starting at a worse health level. (Figure 18.) It turns out that the mortality ratio is extremely high in the 

first few days and declines from there toward a limit of about 1.31. 

The final two graphs are like the last two except that they show hazard rather than cumulative risk. 
Simulation again matches theory (equation (2)). The hazards start low, but quickly rise as it becomes more 

common for ill-fated paths in both groups to hit zero. Eventually the trend reverses: most of those 

downward paths do reach death, and the hazard among survivors falls. (See Figure 19.) This quick rise and 
fall, it should be said, is not discernible in the empirical hazard curves in Figure 9. That mismatch may 

indicate unrealism in the model. It may also be caused by having samples too small to finely measure 

 
24 The variance of the Brownian noise is 1 unit per month. This normalization is imposed because health is 
unobserved unless it hits zero, so the scale of the health variable is immaterial (Aalen 1994, p. 240).  
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gyrating hazard curves: even the simulated hazard curves depart noticeably from theory despite a sample 

size of 10,000. 

Finally, the hazard ratio across the two groups, far from being constant, starts high and falls monotonically 

(Figure 20). That does cohere with the empirical demonstrations in the previous section. 

Figure 14. 99 sample paths of Brownian noise with random drift and absorbing boundary at 0 
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Figure 15. Distributions of 10,000 sample paths of Brownian noise with random drift and absorbing boundary at 0 

 

Figure 16. Simulated and theoretical mortality in cohort with common starting point 
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Figure 17. Simulated and theoretical mortality in cohorts with two different starting points 

 

Figure 18. Simulated and theoretical cumulative mortality ratio between cohorts with two different starting points  

 



  31 
 

 

Figure 19. Simulated and theoretical hazard rates in cohorts with two different starting points 

 

Figure 20. Simulated and theoretical hazard ratio between cohorts with two different starting points 
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5.3 Testing 
In section 3.6, and especially Figure 6, I challenged a stripped-down probit model, one whose only 
regressors were variables to represent WHZ or MUAC, to fit basic patterns in the data. The fits were good 

enough to justify some confidence in the validity of the model. Here, I do something similar for the MIG 

model. 

The probit model was tasked with predicting survival rates as a function of anthropometric status. In 

survival modeling proper, the analogous ground-truthing challenge is to match survival curves—capturing 

not only whether death occurs but also when. I will fit the MIG model to multispell data set since those 
contain the most timing and anthropometric information, and ideally the estimator is robust to the 

diversity in spell lengths. Since the model’s clock starts with last measurement rather than birth, the 

benchmark survival curves will be defined in the same way. The MIG model that is tested on them includes 
no controls, not even for age. It only includes the familiar sets of four WHZ or MUAC dummies, in the 𝑐 and 

𝜇 equations.25 

The test results are gathered in Figure 21. Once again, mortality is graphed rather than its complement, 

survival. The four jagged lines in each plot, bracketed by 50% confidence bands, are the purely empirical 

mortality curves. The smooth curves of the same color are predictions based on the best MIG fits. The time 

span chosen for each plot, such as two months for the Philippines, reflects the typical follow-up frequency 
in each data set. 

The simplistic model fits the data surprisingly well. There is perhaps a tendency to overestimate mortality 

in the healthiest group (light orange), which could downward-bias risk ratios expressed with respect to 
that group. 

Next, I return to the earlier narrative: is the MIG model indeed robust to episode lengthening? Just as with 

the Cox model in Figure 10, to produce Figure 22 I run the MIG on each of the data sets in the multispell and 
single-spell configurations and plot the predicted risk ratios. The estimator appears more stable than the 

Cox, though not perfectly stable. For example, where the SAM risk ratios in the Nepal data fell from 17.6 to 

8.1 and from 27.1 to 11.9 for WHZ and MUAC respectively, the MIG risk ratio estimates move from 11.3 to 
5.9 and 5.7 to 5.9. 

Overall, the MIG model looks stable and accurate enough that its full results, like the probit model’s, 

deserve some credence. 

 
25 𝑐 is modeled in logarithms in order to guarantee positivity. 
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Figure 21. Kaplan-Meier survival curves in time since measurement, by country, anthropometric indicator, and four-way grouping, 
with 50% confidence intervals and MIG model fits 
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Figure 22. MIG model risk ratio estimates on multispell and single-spell data sets, including Olofin controls where available 

 

5.4 MIG estimates 
My preferred MIG specification incorporates the Olofin et al. controls, where defined, into the 𝜇 equation, 

and represents WHZ or MUAC quadratically in both the 𝑐 and 𝜇 equations (sections 3.5 and 3.6 discussed 

these choices).  

Table 4 shows the MIG parameter estimates when taking WHZ as the anthropometric indicator. Where 

Olofin controls are defined, regressions are reported both with and without them. But for clarity the 

coefficients on controls are not shown. The units of 𝜇 are changes in the health level per unit of time (the 
month), so the coefficients in the 𝜇 equation should also be taken per month. 
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Because WHZ enters four times—linearly and quadratically in two equations—the relevant coefficients are 

hard to interpret. At extreme low values of WHZ, such as −4, the quadratic terms dominate, and of these 

the one in the 𝜇 equation is usually larger, especially after multiplication by the average number of months 
in a spell. It is always positive, meaning that having extremely low (negative) WHZ is associated with 

greater risk. It is interesting, and unexpected, that the best fit ascribes  

The consistent negative coefficients on age confirm that being older reduces mortality. Gender shows little 
consistent effect. 

Since it is not immediately obvious how much a change in WHZ from, say –3 to –2, affects the risk of death, 

the last rows of the table return to risk ratios predicted by the fitted model, by way of equation (1). Two 
risk ratios are derived. First, to represent complete cure of SAM, risk ratios are once again computed for 

WHZ = –3.5 versus WHZ = –0.5. The predicted risk ratio ranges from 2.387 in Senegal to approximately 16 

in the Philippines. These values are lower than the hazard ratios in Olofin et al. (2013, Table S2(C)), but 
different enough from each other to suggest that the effects of measurement aging have not been 

completely expunged. (Recall that the Philippines data features the most frequent follow-up and the 

Senegal data the least.) 

The second comparison uses WHZ scores that are closer together, at –2.75 and –1.75, which may be more 

relevant for assessing the average impact of CMAM. As noted in the introduction, mean WHZ for children 

with WHZ < −2 in DHS data was found to be −2.77, and CMAM may be expected to increase WHZ for such 
children by one point on average. In each country, this narrowing naturally shrinks the mortality ratio; and 

it shrinks the standard errors even more since a larger denominator supports more stable ratios. 

I perform the same analysis with MUAC in the place of WHZ. Since the WHO’s recommended thresholds for 
diagnosing SAM and MAM are 11.5 and 12.5cm, higher than the corresponding WHZ thresholds by 14.5, for 

illustrative MUAC risk ratios, I add 14.5 to all the WHZ values used above. I compare MUAC = 11cm to 

MUAC = 14cm and MUAC = 11.75cm to MUAC = 12.75cm. See Table 5. 
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Table 4. Regression results for MIG model with initial health quadratic in WHZ 

 DRC Guinea-Bissau Nepal Philippines Senegal 
With controls? No No Yes No Yes No Yes No 
c         
  WHZ 0.250 0.279 0.277 1.110 0.952 0.478 0.514 0.007 
 (0.116) (0.196) (0.195) (0.429) (0.365) (0.309) (0.382) (0.171) 
  WHZ2 0.038 0.004 0.003 0.137 0.110 0.069 0.066 –0.009 
 (0.043) (0.039) (0.039) (0.072) (0.062) (0.058) (0.068) (0.045) 
  Constant 1.796 1.784 1.783 3.354 3.157 1.844 1.919 2.412 
 (0.189) (0.407) (0.407) (0.597) (0.495) (0.395) (0.512) (0.328) 
𝜇          
  WHZ 0.082 0.099 0.092 0.126 0.146 0.205 0.228 –0.034 
 (0.071) (0.118) (0.116) (0.169) (0.146) (0.230) (0.280) (0.044) 
  WHZ2 0.116 0.044 0.041 0.097 0.076 0.187 0.174 0.021 
 (0.036) (0.042) (0.042) (0.044) (0.039) (0.050) (0.057) (0.012) 
  Age (months) –0.026 –0.016 –0.015 –0.012 –0.009 –0.040 –0.041 –0.012 
 (0.004) (0.007) (0.007) (0.005) (0.005) (0.014) (0.017) (0.002) 
  Female –0.085 –0.134 –0.134 0.043 0.047 0.060 0.057 0.014 
 (0.101) (0.144) (0.143) (0.140) (0.117) (0.143) (0.155) (0.029) 
ln 𝜏2          
  Constant 0.563 0.173 0.157 0.697 0.228 0.848 0.866 –1.062 
 (0.249) (0.463) (0.480) (0.478) (0.614) (0.282) (0.355) (0.332) 
Observations 17975 3274 3270 18309 18104 21888 19148 12610 
         
One-year mortality ratio 6.120 2.971 2.942 9.161 8.738 17.402 15.645 2.387 
  WHZ = – 3.5 vs. – 0.5 (2.135) (1.351) (1.429) (4.258) (3.481) (5.191) (5.572) (0.428) 
One-year mortality ratio 2.003 1.518 1.509 2.383 2.359 3.045 2.967 1.376 
  WHZ = – 2.75 vs. – 1.75 (0.231) (0.281) (0.281) (1.648) (0.354) (0.468) (1.545) (0.083) 
Notes: Standard errors are in parenthesis, clustered by individual. Sample restricted to spells with initial age between 6 and 60 
months. By the sign convention in the 𝜇 equation, negative coefficients cause higher values of corresponding variables to reduce 
the proximity of death, i.e., increase health. Control sets defined in Olofin et al. (2013), Table S1, included where available, in the 𝜇 
equation; their coefficients are omitted for clarity. Mortality ratios are computed by equation (1), taking WHZ values as shown, 𝑡 at 
12 months, age at six months, and all other controls at their sample means. Standard errors of mortality ratios are computed via 
simulation: 10,000 draws are taken from the multivariate normal distribution implied by the parameter estimates and the log 
mortality ratio computed for each. 
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Table 5. Regression results for MIG model with initial health quadratic in MUAC 

 DRC Nepal Senegal 
With controls? No No Yes No 
c     
  MUAC (cm) –0.262 0.208 0.214 0.536 
 (0.976) (0.417) (0.415) (0.641) 
  MUAC2 (cm2) 0.018 –0.004 –0.004 –0.018 
 (0.040) (0.019) (0.019) (0.025) 
  Constant 2.195 –0.421 –0.475 –1.577 
 (5.884) (2.207) (2.193) (4.207) 
𝜇      
  MUAC (cm) –1.653 –1.667 –1.694 –0.416 
 (0.589) (0.322) (0.325) (0.199) 
  MUAC2 (cm2) 0.059 0.050 0.052 0.012 
 (0.023) (0.014) (0.014) (0.007) 
  Age (months) –0.018 –0.002 –0.002 –0.010 
 (0.004) (0.002) (0.002) (0.002) 
  Female –0.150 0.015 0.012 –0.018 
 (0.095) (0.059) (0.059) (0.029) 
ln 𝜏2      
  Constant 0.399 0.765 0.754 –1.087 
 (0.243) (0.147) (0.146) (0.389) 
Observations 18295 104866 103848 12638 
     
One-year mortality ratio 3.520 11.242 10.139 2.656 
  MUAC = 11cm vs. 14cm (0.872) (2.298) (2.055) (0.482) 
One-year mortality ratio 1.618 2.338 2.270 1.408 
  MUAC = 11.75cm vs. 12.75cm (0.140) (0.220) (0.226) (0.138) 
Notes: See notes to Table 4. 
 

5.5 Meta-analysis 
To blend results across data sets, and in a way that minimizes my discretion, I copy Olofin et al. in 

performing DerSimonian and Laird (1986) random-effects meta-analysis on the “with-controls-where-

available” regressions. The meta-analysis is applied to the one-year risk ratios at the bottom of the 
regression tables, taken in logarithms. 

Figure 23 and Figure 24 display the resulting forest plots for the two WHZ risk ratios. The meta-analytic 
bottom lines for the one-year mortality ratios are 5.61 for WHZ = –3.5 vs. –0.5 and 1.81 for WHZ = –2.75 vs. 
–1.75. The next two figures do the same for MUAC, and produce similar overall averages despite the 
changes in metric and sample: 4.56 for MUAC = 11cm vs. 14cm and 1.73 for MUAC = 11.75 vs. 12.75cm. 
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Figure 23. Forest plot for random-effects meta-analysis of WHZ = −3.5 vs. −0.5 mortality ratios in MIG model 

 

Figure 24. Forest plot for random-effects meta-analysis of WHZ = −2.75 vs. −1.75 mortality ratios in MIG model 

     

Figure 25. Forest plot for random-effects meta-analysis of MUAC = 11cm vs. 14cm mortality ratios in MIG model 
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Figure 26. Forest plot for random-effects meta-analysis of MUAC = 11.75cm vs. 12.75cm mortality ratios in MIG model 

 

6 Probit results 
To check the MIG results I return to the simpler approach that emerged in the analytical narrative: a probit 

model fit to single-spell data sets. As in the MIG modeling, I enter anthropometric variables quadratically, 

control for age and gender, and include the Olofin controls where available. Since timing information for 

death is not needed, the Indonesia data are now incorporated. 

Parameter estimates and model-based one-year risk ratios appear in Table 6 and Table 7. The forest plots 

for WHZ are in Figure 27 and Figure 28 and those for MUAC in Figure 29 and Figure 30. All follow the 

formats of corresponding MIG displays. The meta-analytic bottom lines change remarkably little, coming 
modestly lower. The mortality ratio for the narrower comparison is 1.58 for WHZ and 1.56 for MUAC.  

Given all the differences in sample, data structure, and method, this concordance is reassuring.
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Table 6. Regression results for probit model with initial health quadratic in WHZ 

 DRC Guinea-Bissau Indonesia Nepal Philippines Senegal 
With controls? No No Yes No Yes No Yes No Yes No 
  WHZ –0.097 –0.054 –0.033 –0.235 –0.253 –0.218 –0.200 –0.144 –0.141 –0.060 
 (0.050) (0.084) (0.086) (0.061) (0.064) (0.119) (0.121) (0.065) (0.073) (0.038) 
  WHZ2 0.008 0.067 0.096 –0.033 –0.040 0.028 0.025 0.051 0.048 0.034 
 (0.023) (0.035) (0.040) (0.027) (0.029) (0.030) (0.031) (0.025) (0.028) (0.015) 
  Age (months) –0.012 –0.157 –0.187 0.015 0.022 –0.042 –0.042 –0.012 –0.020 0.021 
 (0.089) (0.178) (0.184) (0.085) (0.088) (0.112) (0.116) (0.106) (0.119) (0.064) 
  Female –0.022 –0.011 –0.011 –0.010 –0.008 –0.009 –0.009 0.005 –0.003 –0.021 
 (0.003) (0.011) (0.011) (0.003) (0.004) (0.005) (0.005) (0.054) (0.061) (0.002) 
Observations 4464 529 477 2642 2517 3349 2986 2566 2223 4933 
           
One-year mortality ratio 2.097 4.454 6.159 1.715 1.642 8.400 7.184 7.664 7.732 2.546 
  WHZ = – 3.5 vs. – 0.5 (0.831) (2.003) (2.920) (0.673) (0.727) (2.725) (2.443) (2.595) (3.059) (0.456) 
One-year mortality ratio 1.287 1.755 2.019 1.155 1.131 2.075 1.968 2.078 2.082 1.406 
  WHZ = – 2.75 vs. – 1.75 (0.196) (0.322) (0.405) (0.170) (0.187) (0.254) (0.252) (0.289) (0.336) (0.100) 
Notes: Standard errors are in parenthesis, clustered by individual. Samples consist of one one-year spell per child, starting from first measurement after age 6 months. Control 
sets defined in Olofin et al. (2013), Table S1, included where available; their coefficients are omitted for clarity. In computing mortality ratios, WHZ values are taken as shown, age 
is taken at six months, and all controls are taken at their sample means. Standard errors of mortality ratios are computed via simulation: 10,000 draws are taken from the 
multivariate normal distribution implied by the parameter estimates and the log mortality ratio computed for each. 
 
Table 7. Regression results for probit model with initial health quadratic in MUAC 

 DRC Nepal Senegal 
With controls? No No Yes No 
  MUAC (cm) –0.408 –1.235 –1.270 –0.675 
 (0.478) (0.175) (0.177) (0.298) 
  MUAC2 (cm2) 0.010 0.038 0.040 0.019 
 (0.019) (0.007) (0.007) (0.011) 
  Age (months) –0.054 –0.017 –0.021 –0.038 
 (0.089) (0.046) (0.047) (0.064) 
  Female –0.017 –0.004 –0.004 –0.019 
 (0.004) (0.002) (0.002) (0.003) 
Observations 4573 18875 18197 4940 
     
One-year mortality ratio 2.585 6.644 6.182 2.585 
  MUAC = 11cm vs. 14cm (0.688) (0.861) (0.829) (0.393) 
One-year mortality ratio 1.385 1.964 1.926 1.391 
  MUAC = 11.75cm vs. 12.75cm (0.119) (0.081) (0.082) (0.080) 
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Figure 27. Forest plot for random-effects meta-analysis of WHZ = −3.5 vs. WHZ = −0.5 mortality ratios in probit model 

 

Figure 28. Forest plot for random-effects meta-analysis of WHZ = −2.75 vs. WHZ = −1.75 mortality ratios in probit model 

 

Figure 29. Forest plot for random-effects meta-analysis of MUAC = 11 vs. MUAC = 14 mortality ratios in probit model 
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Figure 30. Forest plot for random-effects meta-analysis of MUAC = 11.75 vs. MUAC = 12.75 mortality ratios in probit model 

 

7 From statistical modeling to predictive modeling 
The purpose of the estimation in the previous two sections is to understand the process that 

generated the data that we have. This is distinct from predicting the impact of an intervention. As far 

as we know, the intervention is not present in our data. 

The question of how best to bridge from the first to second is hard. If we learn that in some target 
setting today, the average child diagnosed with SAM exits CMAM with WHZ = −1.5, it does not 

follow that the child will face, and have just faced, the same mortality risk as children with WHZ =

−1.5 in the data analyzed above. 

GiveWell Senior Researcher Stephan Guyenet and I collaborated on a preliminary methodology to 

incorporate the observational risk ratio estimates above into an estimate of the impact of CMAM. 

The methodology incorporates MIG model results in two places: 

1. To estimate the counterfactual mortality ratio of children with SAM or MAM who would be 

admitted to the treatment program, relative to non-malnourished children. In other words, in 

the absence of treatment, how elevated is the risk of death among malnourished children over a 
one-year period, relative to non-malnourished children? 

2. To estimate the impact of the intervention. In other words, among malnourished children, how 

much does the intervention reduce the risk of dying over a one-year period, relative to the 

counterfactual of not receiving treatment? We separately estimate the impact of government-

only treatment and NGO-supported treatment. 

The CEA uses these ratios to estimate the all-cause mortality impact of transitioning from no 
treatment to NGO-supported treatment, and transitioning from government treatment to NGO-

supported treatment. 

Conceptually, the method for generating the ratios begins with measured WHZ of children in MAM, 
SAM and non-malnourished categories in the countries of interest. It uses these WHZ inputs to 

generate country-specific annual mortality ratios for untreated SAM and MAM relative to non-

malnourished children (item 1 above). To estimate a treatment effect (2), the method begins by 
estimating WHZ gain due to CMAM. It then uses the MIG model to generate annual mortality ratios 

based on baseline vs. post-treatment WHZ for MAM and SAM. 

The method elaborates the process presented in the previous two sections. Instead of computing a 
single risk ratio such as for WHZ = −3.5 vs. −0.5, it computes distinct ratios for thousands of 

children whose data appear in Demographic and Health Surveys. For example, for an eight-month-
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old girl appearing in the Chad data with WHZ = −3.5, which qualifies for SAM diagnosis, it is 

assumed that NGO-administered CMAM will increase WHZ by 1.54, bringing the child to WHZ = 

−1.96. The risk ratio is then estimated for WHZ = −3.5 vs. −1.96. The thousands of (log) risk ratios 
are then averaged. This elaboration applies after the MIG model fitting, so that all risk ratios come 

from the MIG estimates in section 5, but before meta-analysis. 

To be precise, the process runs as follows: 

• Five prospective intervention countries are identified: Chad, Ethiopia, Mali, Niger, and Nigeria. 

• The most recent DHS microdata from those countries are obtained. Age, gender, and WHZ 

observations are retained for all children aged 6–60 months whose WHZ classifies them as SAM 

or MAM (WHZ < −2).26 

• Three comparison groups are constructed, one to compute the malnourished-nourished risk 

ratios in item 1 above and two for the untreated-treated ratios in item 2 (for government- and 
NGO-run treatment). For the first, the comparator is fixed at the country’s average WHZ for 

those with WHZ > 2, according to the DHS data. For the rest, the “treatment groups” are 

constructed by adding category-specific increments to each malnourished child’s WHZ. The 
increments are differentiated, by country, by SAM vs. MAM status, and by government vs. NGO 

administrator type. They are derived from literature using methods described below. The 

estimates are very similar across countries and agency types. The sample means of these WHZ 
values are collated in the “WHZ low” and “WHZ high” columns of Table 9 and Table 10. 

• We do not currently have direct estimates of WHZ at admission and discharge from the 

programs we are evaluating. To estimate mean WHZ gain resulting from CMAM treatment, we 

performed a literature review of the impact of CMAM programs on WHZ and took a weighted 

average. The results suggest that CMAM increases WHZ by 0.8 in children with MAM and by 1.3 
in children with SAM. We then further adjusted these values to account for apparently greater 

treatment success rates in NGO-supported vs. government-only CMAM programs. After this 

adjustment, NGO-supported CMAM programs are estimated to increase mean WHZ by about 0.8 
in children with MAM and about 1.5 in children with SAM. (See Table 8.) 

• For each DHS observation, each of the three comparisons, and each of the five historical data 

sets used in the MIG WHZ estimation, the one-year log mortality ratios are computed, just as in 

Table 4.  

• Using DHS sampling weights, the resulting individual-level log mortality ratios are averaged 

across DHS samples, for each historical data set, producing point estimates analogous to the 

one-year risk ratios at the bottom of the regression tables above—for each historical data set, 

intervention country, and agency type. 

• To generate standard errors for each ratio, this process is repeated 10,000 times, each iteration 

taking a random draw from the multivariate normal parameter distribution implied by a 

country’s estimation result as summarized in Table 4.27 

• To combine results across historical data sets, producing one estimate for each target country 

and agency type, random-effects meta-regression is performed, as above. 

 
26 To my knowledge, DHS surveys do not capture MUAC, and the same goes for UNICEF’s MICS. SMART 
surveys do emphasize MUAC but the SMART program does not appear from its website to share microdata as 
readily. 
27 The variance of the normal distribution is the full parameter covariance matrix. 

https://docs.google.com/spreadsheets/d/11rqCBCSODZjc68pVEmRuZ3iDQ3uACG5usPeXToslImU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/11rqCBCSODZjc68pVEmRuZ3iDQ3uACG5usPeXToslImU/edit?usp=sharing
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The final risk ratios are in Table 9 and Table 10. The major differences are across the SAM/MAM 

divide. Inverting the ratios in Table 10, the analysis roughly suggests that CMAM reduces one-year 

mortality by 40% among children with MAM and by 70% among children with SAM. 

This predictive modeling approach assumes that the effect of malnutrition treatment on mortality is 
captured by its impact on WHZ. We believe this assumption is highly uncertain, and likely incorrect. 
There are at least three specific reasons to believe the mortality impact of CMAM treatment 
programs may diverge from our current estimates: 

• CMAM treatment programs include micronutrient supplementation, which could impact 
mortality risk independently of WHZ. For example, vitamin A is a component of RUTF/RUSF 
supplements, and vitamin A supplementation reduces mortality by reducing susceptibility to 
certain infectious diseases. This would cause our current model to underestimate the treatment 
effect. 

• CMAM treatment programs include antibiotic treatment, which could impact mortality risk 
independently of WHZ. This would cause our current model to underestimate the treatment 
effect. 

• Elevated mortality risk associated with malnutrition in the data sets underlying the MIG model 
may not be entirely causally attributable to malnutrition per se. It may be partially a result of 
confounding by socioeconomic conditions or other factors. This would cause our current model 
to overestimate the treatment effect. 

An additional source of uncertainty is the WHZ values at admission and discharge, which are not 
based on data from the programs themselves. 

We currently use this method as a rough approximation in our cost-effectiveness model as we 
refine our estimation method. We will likely use the method described and refine it by adding 
adjustments for important variables, such as those described above, rather than starting from 
scratch. However, we remain open to alternative methods. 

Table 8. WHZ increments used to estimate mortality impact of community-based management of malnutrition (CMAM) 

 Chad Ethiopia Mali Niger Nigeria 

Mean WHZ gain from government treatment, MAM 0.77 0.77 0.77 0.77 0.77 

Mean WHZ gain from government treatment, SAM 1.27 1.27 1.27 1.27 1.27 

Mean WHZ gain from NGO treatment, MAM 0.78 0.80 0.81 0.78 0.78 

Mean WHZ gain from NGO treatment, SAM 1.62 1.50 1.50 1.44 1.54 
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Table 9. Meta-analytical one-year mortality ratios for malnourished vs. well-nourished children 

 Chad  Ethiopia  Mali  Niger  Nigeria 

  
WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio 

MAM –2.42 –0.25 2.58  –2.31 –0.20 2.44  –2.40 –0.35 2.48  –2.42 –0.52 2.54  –2.39 –0.16 2.44 
(0.28) 0.00  (0.54)  (0.25) 0.00  (0.47)  (0.28) 0.00  (0.50)  (0.28) 0.00  (0.53)  (0.29) 0.00  (0.48) 

SAM –3.62 –0.25 7.01  –3.53 –0.20 7.07  –3.70 –0.35 7.18  –3.71 –0.52 6.90  –3.57 –0.16 6.39 
(0.47) 0.00  (2.92)  (0.40) 0.00  (2.93)  (0.55) 0.00  (3.07)  (0.55) 0.00  (2.89)  (0.45) 0.00  (2.55) 

Note: WHZ values are means of DHS samples. Standard deviations (for WHZ low) and standard errors (for risk ratios) in 
parentheses. “WHZ high” values have zero standard deviation because the exact value shown is used for every subject in 

the samples. 

Table 10. Meta-analytical one-year mortality ratios for proxy treatment vs proxy control groups 

 Chad  Ethiopia  Mali  Niger  Nigeria 

  
WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio 

MAM, gov. –2.42 –1.65 1.69  –2.31 –1.55 1.68  –2.40 –1.63 1.67  –2.42 –1.65 1.70  –2.39 –1.62 1.67 
(0.28) (0.28) (0.20)  (0.25) (0.25) (0.20)  (0.28) (0.28) (0.20)  (0.28) (0.28) (0.20)  (0.29) (0.29) (0.19) 

SAM, gov. –3.62 –2.35 2.89  –3.53 –2.27 2.98  –3.70 –2.43 2.84  –3.71 –2.44 2.85  –3.57 –2.30 2.78 
(0.47) (0.47) (0.67)  (0.40) (0.40) (0.71)  (0.55) (0.55) (0.65)  (0.55) (0.55) (0.64)  (0.45) (0.45) (0.64) 

MAM, NGO –2.42 –1.63 1.71  –2.31 –1.52 1.71  –2.40 –1.59 1.71  –2.42 –1.63 1.71  –2.39 –1.61 1.68 
(0.28) (0.28) (0.21)  (0.25) (0.25) (0.21)  (0.28) (0.28) (0.21)  (0.28) (0.28) (0.21)  (0.29) (0.29) (0.20) 

SAM, NGO –3.62 –2.00 3.72  –3.53 –2.03 3.55  –3.70 –2.20 3.37  –3.71 –2.27 3.23  –3.57 –2.03 3.36 
(0.47) (0.47) (1.07)  (0.40) (0.40) (0.98)  (0.55) (0.55) (0.90)  (0.55) (0.55) (0.82)  (0.45) (0.45) (0.92) 

Note: WHZ values are means of DHS samples. Standard deviations (for WHZ low and WHZ high) and standard errors (for 

risk ratios) in parentheses. 
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Appendix. Sensitivity test 
The following displays show how the results in Figure 23–Figure 30, Table 9, and Table 10 change 

when the timeframe for impact is reduced from 12 to 3 months. 

Figure 31. Forest plot for random-effects meta-analysis of WHZ = −3.5 vs. −0.5 mortality ratios in MIG model, 3-month 
follow-up 

 

Figure 32. Forest plot for random-effects meta-analysis of WHZ = −2.75 vs. −1.75 mortality ratios in MIG model, 3-month 
follow-up 

     

Figure 33. Forest plot for random-effects meta-analysis of MUAC = 11cm vs. 14cm mortality ratios in MIG model, 3-month 
follow-up 
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Figure 34. Forest plot for random-effects meta-analysis of MUAC = 11.75cm vs. 12.75cm mortality ratios in MIG model, 3-
month follow-up 

 

Figure 35. Forest plot for random-effects meta-analysis of WHZ = −3.5 vs. WHZ = −0.5 mortality ratios in probit model, 3-
month follow-up 

 

Figure 36. Forest plot for random-effects meta-analysis of WHZ = −2.75 vs. WHZ = −1.75 mortality ratios in probit model, 
3-month follow-up 
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Figure 37. Forest plot for random-effects meta-analysis of MUAC = 11 vs. MUAC = 14 mortality ratios in probit model, 3-
month follow-up 

 

Figure 38. Forest plot for random-effects meta-analysis of MUAC = 11.75 vs. MUAC = 12.75 mortality ratios in probit model, 3-
month follow-up 
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Table 11. Meta-analytical mortality ratios for malnourished vs. well-nourished children using 3-month follow-up, MIG model 

 Chad  Ethiopia  Mali  Niger  Nigeria 

  
WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio 

MAM –2.42 –0.25 3.70  –2.31 –0.20 3.53  –2.40 –0.35 3.45  –2.42 –0.52 3.36  –2.39 –0.16 3.59 
(0.28) 0.00  (1.12)  (0.25) 0.00  (1.02)  (0.28) 0.00  (0.99)  (0.28) 0.00  (0.94)  (0.29) 0.00  (1.06) 

SAM –3.62 –0.25 10.92  –3.53 –0.20 11.14  –3.70 –0.35 10.83  –3.71 –0.52 10.17  –3.57 –0.16 10.01 
(0.47) 0.00  (5.57)  (0.40) 0.00  (5.77)  (0.55) 0.00  (5.44)  (0.55) 0.00  (5.00)  (0.45) 0.00  (4.92) 

Note: WHZ values are means of DHS samples. Standard deviations (for WHZ low) and standard errors (for risk ratios) in 
parentheses. “WHZ high” values have zero standard deviation because the exact value shown is used for every subject in 

the samples. 

Table 12. Meta-analytical mortality ratios for proxy treatment vs proxy control groups using 3-month follow-up, MIG model 

 Chad  Ethiopia  Mali  Niger  Nigeria 

  
WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio   

WHZ 
low 

WHZ 
high 

Risk 
ratio 

MAM, gov. –2.42 –1.65 1.84  –2.31 –1.54 1.83  –2.40 –1.63 1.82  –2.42 –1.65 1.84  –2.39 –1.62 1.81 
(0.28) (0.28) (0.24)  (0.25) (0.25) (0.24)  (0.28) (0.28) (0.24)  (0.28) (0.28) (0.24)  (0.29) (0.29) (0.23) 

SAM, gov. –3.62 –2.28 3.28  –3.53 –2.19 3.41  –3.70 –2.36 3.21  –3.71 –2.37 3.23  –3.57 –2.23 3.17 
(0.47) (0.47) (0.75)  (0.40) (0.40) (0.81)  (0.55) (0.55) (0.71)  (0.55) (0.55) (0.72)  (0.45) (0.45) (0.71) 

MAM, NGO –2.42 –1.64 1.85  –2.31 –1.51 1.87  –2.40 –1.59 1.87  –2.42 –1.64 1.85  –2.39 –1.61 1.82 
(0.28) (0.28) (0.25)  (0.25) (0.25) (0.26)  (0.28) (0.28) (0.26)  (0.28) (0.28) (0.25)  (0.29) (0.29) (0.24) 

SAM, NGO –3.62 –1.92 4.40  –3.53 –1.95 4.17  –3.70 –2.12 3.91  –3.71 –2.19 3.75  –3.57 –1.94 3.97 
(0.47) (0.47) (1.27)  (0.40) (0.40) (1.17)  (0.55) (0.55) (1.02)  (0.55) (0.55) (0.94)  (0.45) (0.45) (1.08) 

Note: WHZ values are means of DHS samples. Standard deviations (for WHZ low and WHZ high) and standard errors (for 

risk ratios) in parentheses. 
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