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ABSTRACT

Policymakers often choose a policy bundle that is a combination of different interventions in 
different dosages. We develop a new technique—treatment variant aggregation (TVA)—to select 
a policy from a large factorial design. TVA pools together policy variants that are not 
meaningfully different and prunes those deemed ineffective. This allows us to restrict attention to 
aggregated policy variants, consistently estimate their effects on the outcome, and estimate the 
best policy effect adjusting for the winner’s curse. We apply TVA to a large randomized 
controlled trial that tests interventions to stimulate demand for immunization in Haryana, India. 
The policies under consideration include reminders, incentives, and local ambassadors for 
community mobilization. Cross-randomizing these interventions, with different dosages or types 
of each intervention, yields 75 combinations. The policy with the largest impact (which combines 
incentives, ambassadors who are information hubs, and reminders) increases the number of 
immunizations by 44% relative to the status quo. The most cost-effective policy (information 
hubs, ambassadors, and SMS reminders but no incentives) increases the number of 
immunizations per dollar by 9.1% relative to status quo.
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1. Introduction

In many settings, policymakers have to select the best policy among potential bundles that
combine several interventions, each with different possible dosages or varieties. Similarly in
medicine, a particular treatment regimen may combine several drugs in different potential
dosages. For example, the management of HIV-AIDS was revolutionized in the mid 1990 by
the combination of two or three drugs in subtle dosages, the famous “AIDS Cocktail.”

In this paper, we consider the problem of the state government in Haryana, India, who
was looking to choose a new bundle of interventions to increase children’s immunization
coverage. Immunization is recognized as one of the most effective and cost-effective ways
to prevent illness, disability, and death. Yet nearly 20 million children under one do not
receive critical immunizations each year (UNICEF and WHO, 2019). In 2016, 7 million of
these children were in India, where only 60% of children received the basic set of vaccination
within one year of life. Though resources directed towards immunization have increased
steadily, there is mounting evidence that insufficient parental demand has contributed to
stagnating immunization rates (WHO, 2019). Based on the existing research, the options
considered were small incentives to parents, social network mobilization, and SMS reminders.
The government also needed to determine the level and slope of incentives, the set of people
to mobilize, and the intensity of the SMS reminder campaigns.

The ideal strategy, if time and implementation capacities were not constraints, would be
to experiment iteratively in the context until the best bundle is found. There is a growing
literature on how to conduct and analyze adaptive trials (Hadad et al., 2021; Kasy and
Sautmann, 2021; Zhan et al., 2021). However, it is often not possible to conduct such
sequential trials: the window for experimentation may be short before a policy must be
chosen, or a decision on a treatment regimen or vaccine must be made quickly because of
an urgent health threat. In such cases, the only option may be to conduct a large scale
experiment that simultaneously tests many different policy bundles. This was certainly true
in the case of HIV-AIDs, where there were huge pressures to rapidly identify and approve
a treatment. In Haryana, it was possible to conduct a single experiment with multiple
treatments, in over 900 villages.

However, with several alternative interventions and multiple possible dosages, there is
an enormous number of potential combinations, each of which is a unique policy bundle.
Altogether, in Haryana, there were 75 possible bundles of interventions with different dosages.
There is no clear guidance in the literature on how to design and analyze such trials when
the number of potential options is large.

We fill this gap by developing a methodology for treatment variant aggregation (TVA): a
principled algorithm that pools together policy variants that have similar impact and prunes
ineffective policy options. This reduces the dimensionality of the problem, and enables
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identification of the best overall combination and consistent estimation of its impact. This
methodology allows us to solve two problems that arise when evaluating large numbers of
candidate policy bundles (henceforth we use “policy” as a short-hand for “policy bundle”).

First, the researcher must decide how many and which potential policies to include in
an experimental design, and how to analyze the trial. One approach, recommended in
McKenzie (2019), is to only include a limited number of bundles. For example, the ACTG-
320 trials compared the three drug cocktail (protease inhibitor plus two nucleosides), in one
specific dosage, to the two nucleosides in the same dosage (Hammer et al., 1997). However,
the optimality of such an approach presumes an “oracle property:” that the researcher
or policymaker already knows which policies are worth comparing. We consider situations
in which any of many policies could turn out to be optimal, and the researcher would
like to choose among all unique policy bundles in a fully-saturated factorial design. This
reduces power since each policy may only be observed on a small sample, therefore, to
increase precision, researchers often attempt to pool policy bundles ex-post based on observed
outcomes. Without specific structure to the problem, however, this can be misleading in
finite samples, especially when interaction effects are small, so that a test against zero has
limited power, but are not quite zero (this is the “local-to-zero” problem, see Muralidharan
et al. (2019)). Thus, we need to find minimal and realistic assumptions on the inferential
environment that enable a principled, data driven approach to reducing the dimensionality
of the problem.

The second problem is that the impact of a policy that is estimated to be the best out
of a set of K unique policies can be over-estimated when K is large, due to the “winner’s
curse” (Andrews, Kitagawa, and McCloskey, 2021). Some policy k⋆ could have the highest
estimated impact partially due to a high true effect, but could also partially be due to
randomness. Conditional on being the best in the data, some of the estimated impact is
likely due to randomness. As a result, the expected impact of policy k⋆ is overestimated and
the statistician must adjust for it.

Our main methodological contribution takes place before any estimation: it is a method for
mapping a large number of unique policies into a small number of bundles in a data driven
way. We develop a tool (a specific Hasse diagram) to represent a complicated factorial
design while incorporating what the researcher knows about the structure of the problem,
and enable treatment variant aggregation. We argue that this satisfies conditions required to
apply appropriate existing regularization estimators (the Puffer LASSO) to collapse dosages
into a smaller number of intervention bundles. This innovation thus allows us to combine
existing methods to develop estimators that are consistent and asymptotically normally
distributed for a large factorial design. In the case of the interventions to maximize the
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number of measles immunizations in Haryana, this step reduces it from 75 candidate policies
to 4.

The statistical setting that we analyze is as follows. There are M possible intervention
arms, R possible “dosages” per arm (including zero) and therefore K = RM possible policies.
The policymaker is uncertain about which policies are effective. However, it can be that in
some circumstances an incremental dosage change on some arm does not have a meaningful
effect on the outcome, for some other combination of other arms. For example, if there are
three interventions to increase immunization demand (x, y, z), and two adjacent dosages z
and z′ for the third intervention (e.g., SMS are sent to 33% of the parents, or to 66% of the
parents), then it is possible that the bundles (x, y, z) and (x, y, z′) are equally effective for
some particular choices of x and y. We can thus pool those two policies, (x, y, z) and (x, y, z′),
and treat them as one for all practical purposes. The policymaker conducts treatment variant
aggregation (TVA). This pools together policy variants that are not meaningfully different
(e.g., (x, y, z) and (x, y, z′) are pooled together as above) and prunes all the combinations
that are ineffective (those that pool with the null policy). TVA allows us to restrict attention
to aggregated policy variants and only those that matter, which can improve estimation. We
discuss how we can use TVA to consistently estimate policy effects and estimate the best
policy effect adjusting for the winner’s curse. We proceed in several steps.

The first step is to represent the fully-saturated factorial regression of the outcome on
unique policies in terms of another, equivalent specification that tracks the effects of incremental
dosages. TVA utilizes a Hasse diagram lattice of policy variants to deduce how zeros in the
marginal effects determines pruning and pooling of variants.

To fix ideas, consider a simple example with two arms (M = 2) and two non-zero dosages
for each (R = 3), yielding K = 9 unique policies. So each arm can either be used or not,
and used in either a low or high dose. Let us represent these by [T1, T2] = [0, 0], [0, 1], [0, 2],
[1, 0], etc., where the entries are the corresponding treatment levels with 0 being not used,
and 1 being low and 2 high dosage. A standard regression would just have a dummy variable
for each particular policy combination [T1, T2], and then a corresponding coefficient β[T1,T2].
An alternative representation breaks these into marginal effects:

y = α[0,0] + α[1,0] · 1{T1 ≥ 1} · 1{T2 = 0}+ α[0,1] · 1{T1 = 0} · 1{T2 ≥ 1}(1.1)

+ α[2,0] · 1{T1 = 2} · 1{T2 = 0}+ α[0,2] · 1{T1 = 0} · 1{T2 = 2}

+ α[1,1] · 1{T1 ≥ 1} · 1{T2 ≥ 1}+ α[2,1] · 1{T1 = 2} · 1{T2 ≥ 1}

+ α[1,2] · 1{T1 ≥ 1} · 1{T2 = 2}+ α[2,2] · 1{T1 = 2} · 1{T2 = 2}+ ϵ.

In this specification, the α[r1,r2] are all marginal effects, and hence, inspecting the vector
α and checking which α[r1,r2] = 0 tells us which adjacent policies can be pooled together,
and which ones can be pruned (pooled with the null policy; for instance, if α[1,0] = 0). In a
general factorial design of K unique policies, we have regressors of the form 1{T1 ≥ r1, T2 ≥
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r2, . . . , TM ≥ rM} for treatment arm intensities Tm and thresholds rm for arm m, with
K − 1 regressors plus an intercept. At every stage we ask whether an incremental increase
in dosage for a given arm of some policy causes a marginal change. That is, we check for
zero effects: α[r1,...,rM ] = 0 for some or multiple [r1, . . . , rM ].

This approach makes use of the researcher’s a priori knowledge of which policies can
be pooled: these are policies that are dosage variations of the same treatment profile, or
underlying policy type. Therefore, it places discipline on the problem. It ensures we are
not mis-naming pooled choices by pooling non-comparable policy bundles, which is the issue
implicitly raised in Muralidharan et al. (2019).1 We assume that when there are non-zero
marginal effects, those effect sizes are large enough—assuming away the local-to-zero range—
so that we may actually discover and make inferences about the best policy combinations.
Our approach works when these assumptions to allow regularization are palatable. When
the assumptions, or reasonable relaxations, cannot be justified, sequential testing, rather
than simultaneous testing with post-selection processing, is unavoidable.2

Our goal is to identify the support (the set of non-zero coefficients) of the regression
equation (1.1). Under our maintained assumptions, a natural way to do this is to use LASSO.
This requires an extra step, however, since the regressors in equation (1.1) are typically
strongly correlated. For instance, 1{T1 = 2} · 1{T2 = 0} implies 1{T1 ≥ 1} · 1{T2 = 0}.
In fact, the marginal effects specification may fail the necessary and sufficient condition for
LASSO support consistency, of “irrepresentability,” which requires that regressors are not too
correlated (Zhao and Yu, 2006). Thus, the second step is to apply the Puffer transformation
to the variables to which LASSO is being applied (Rohe, 2014; Jia and Rohe, 2015). This de-
correlates the design matrix that comes from (1.1). We show that the the specific structure
of the RCT makes it particularly suitable for this technique.

Once LASSO has been applied on the Puffer-transformed variables to consistently estimate
the marginal effects support, the third step is to reconstruct a set of unique policies taking
into account the pooling and pruning implied by the LASSO results.

The fourth step is to estimate OLS on the new set of unique policies, post-selection. Using
an argument adapted from Javanmard and Montanari (2013), we show that this estimator
is consistent and asymptotically normally distributed.3

1Specifically, Muralidharan et al. (2019) take issue with “short models” such that, for example, what is
claimed as the effect of (x, 0, 0) actually also includes some of the effect of (x, y, 0). In this sense the
treatment is “mis-named”. In TVA, the policy (x, y, 0) is considered to be a categorically different treatment
type from (x, 0, 0) for x, y > 0. More generally, the pooled policy names always unambiguously indicate
which unique policy combinations are pooled together.
2In practice, we show in Online Appendix E.3 through simulations that we may relax the local-to-zero
assumption in several directions and still retain strong performance for this final objective.
3The convergence in distribution is not uniform (in the parameter space) Leeb and Pötscher (2005).
Nevertheless, asymptotic normality holds pointwise (in the parameter space)—essentially, in our setting,
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This vector is of independent interest: these are the estimates and confidence interval of
all the relevant policies. There is an optional fifth step, in case the policy maker is interested
in identifying and getting estimate for a single “best” policy. This step is to re-estimate
the effect of the best pooled and pruned policy, adjusting for the winner’s curse (Andrews
et al., 2021). There are three advantages of conducting this adjustment post-TVA rather
than on the full factorial design. First, when there are fewer potential alternatives to the
best policy k⋆, the odds of picking the best by chance are lower. In fact, in many cases,
the winner’s curse adjustment may not be necessary, when there are sufficiently few policy
bundles that survive at the TVA step. Second, with fewer alternatives, it is less likely that
the second-best alternative has an effect that is similar to the k⋆ effect, which will reduce
the shrinkage penalty. Third, there is the benefit of coherence: if two policies can be pooled,
there is no point in applying a strong shrinkage penalty because of a competition between
them.

We apply this method to the large-scale immunization experiment that we conducted in
Haryana, India, from December 2016 to November 2017 in collaboration with the government
of Haryana, which was interested in selecting the best policy for full scale adoption in the
state . To stimulate demande for immunization, a large literature has found the effectiveness
of “nudges,” including conventional ones such as small cash or in-kind incentives,4 SMS
reminders,5 as well as more novel interventions such as symbolic social rewards6 or using
influential individuals in a social network as “ambassadors.”7 We cross-randomized three arms
with different nudges that had shown some promise in earlier work: (1) monetary incentives,
(2) SMS reminders, and (3) seeding ambassadors. Incentives came in two types (linear and
convex) with two dosages each (low and high in terms of value). SMS reminders had two
dosages. Either 33% or 66% of caregivers received SMS reminders (and voicemails) about
the next scheduled vaccination. Ambassadors where either randomly selected or selected
through a nomination process. The nomination process was done in three ways, one of
which came in two dosages (Information Hub). All together, we have 75 unique policies and
915 villages were at risk for all three treatments taken together.

Applying TVA, we find that when the outcome is the number of measles shot administered,
four policies survive as candidate policies, including two with coefficient that are significantly
different from zero, both of which involve the combination of ambassadors nominated by the
social network, SMS, and incentives. The best policy is to use information hubs and either

the non-uniformity does not have much bite since incorrect selection of the high-effect policies happens with
probability tending rapidly to zero.
4See Banerjee et al. (2010); Bassani et al. (2013); Wakadha et al. (2013); Johri et al. (2015); Oyo-Ita et al.
(2016); Gibson et al. (2017).
5See Wakadha et al. (2013); Domek et al. (2016); Uddin et al. (2016); Regan et al. (2017).
6See Karing (2018).
7See Alatas et al. (2019); Banerjee et al. (2019).
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low or high SMS coverage, in combination with convex incentives that can be either low or
high. This increases the number of immunizations by 44% (p < 0.05), after accounting for
the winner’s curse. Choosing the cheapest among these suggests that the policymaker should
chose low convex incentives, send SMS to 33% of caregivers, and identify information hubs
to relay the message. To maximize the number of immunization per dollar spent, the best
policy is using information hubs along with SMS reminders at 33% or more of caregivers
covered. It increases the number of immunizations per dollar by 9.1% (p < 0.05) compared
to the status quo with no additional intervention. It is the only policy that strictly increases
the number of immunizations per dollar spent, and hence in this case the winner’s curse
adjustment makes essentially no difference (and this step could be omitted).

The results highlight the importance of complementarities that may get lost had a factorial
design not been used. Information hubs magnify the effect of other interventions and spark
diffusion: neither incentives nor reminders are selected on their own, but are selected when
combined with information hubs. Similarly, information hubs are not selected on their own,
but are selected when combined with the conventional strategies. This suggests that in
cases where there are no strong reasons to rule out interactions a priori, it is important to
accommodate them in the design and the statistical analysis.

2. Treatment Variant Aggregation

2.1. Overview and Setup. We have a randomized controlled trial ofM arms andR ordered
dosages ({none, intensity 1,..., intensity R − 1}). This yields K := RM unique treatment
combinations or unique policies. Let Tik ∈ {0, 1} be a dummy variable indicating that unit
i is assigned to unique policy k. Unique policies are described as variants of each other
when they differ only in the (non-zero) dosages of the treatments applied. This implies that
two policies differing only in whether some arm is active or inactive (dosage is zero) are not
considered variants, as formalized below in Section 2.1.1.

Assuming the same number of dosages per arm is for notational ease and without substantive
loss of generality. In practice the number of dosages per arm can vary.

The unique policy regression is given by

(2.1) yi = Tβ0 + ϵi.

The support of this regression is given by the set of unique policies that have non-zero effect
relative to control,

Sβ :=
{
k ∈ [K] :

∣∣∣β0
k

∣∣∣ ̸= 0
}
.

Some of the variants have equivalent effects and ought to be considered as one policy.
Some arms may be altogether ineffective and ought to be pruned (i.e., pooled with control).
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We construct a method of treatment variant aggregation (TVA) in order to pool and prune
variants systematically.

2.1.1. Treatment Profiles and Policy Variants. A fundamental concept is a treatment profile.
This clarifies which unique policies are variants of each other and could potentially be pooled
with one another (without being pooled with the control).

The treatment profile P (k) of a unique policy k designates which of the M arms are active
(having positive dosages), without regards to how high the dosage is. Two unique policies
k, k′ are variants of each other if and only if P (k) = P (k′), i.e., exactly the same arms are
active for both policies. Thus, K unique policies are categorized into 2M treatment profiles.

Example 1. Consider observation i that has an assigned policy k =(No Ambassador,
33% SMS, low-value flat incentives) and observation j that has an assigned assigned policy
k′ =(No Ambassador, 66% SMS, low-value flat incentives). Though k and k′ are distinct
treatment combinations, they share the same treatment profile— P (k) = P (k′)—of (No
Ambassador, Some SMS, Some incentives). Therefore k and k′ are variants. They would
not be variants if instead k′ =(No Ambassador, 66% SMS, No incentives).

2.1.2. Treatment Variant Aggregation: Pooling and Pruning. Increasing the dosage in a
treatment arm may be inconsequential after a point, and more generally policy variants
may have the same impact. Here, we consider a re-specification of (2.1) that explicitly
tracks the marginal effect of increasing dosages by grouping together policy variants that
have the same effect on the outcome.8 When these marginal effects are zero, this means that
a set of variants are to be either pooled or pruned (pooled with control).

Let P denote the set of all partitions of the K policies. Elements of P comprise every
conceivable pooling of the K policies, with generic partition denoted Π. Whether two given
policies k and k′ are pooled corresponds to whether they are members of the same element
of the partition, π ∈ Π.

Out of the full universe of all conceivable poolings only some make sense, and we refer to
those as the admissible poolings. Informally, admissibility says that only policies affected
by the same set of nonzero marginal effects may be pooled. The admissible pools are then
a strict subset P|Λ ⊂ P . The target ST V A ∈ P|Λ is defined to be the maximally admissible
pooled and pruned set of policies (i.e., the coarsest partition).

8While sometimes what is “dosage” and “dosage ordering” is readily apparent from the arm, as in the SMS
arm of our intervention with saturation levels 33% and 66%, in other cases the researcher has to decide this
(of course this can be pre-specified). For example, in the seeds arm of our intervention, we decided that
the information hub ambassador comes in two dosages, with those that are trusted for health advice as the
higher dosage.
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Letting ZST V A
denote the matrix of indicator variables for the pooled policies, our goal is

to estimate the pruned and pooled policy regression:

(2.2) y = ZST V A
η0

ST V A
+ ϵ.

Comparing (2.2) with (2.1), η0 is the projection coefficients of Tβ0 onto ZST V A
, that corresponds

to grouping certain policies, and estimating the parameters for the grouped policies.
Let us make admissibility precise. For a treatment combination k, α0

k is the marginal
effect of the dosages in k within its treatment profile relative to incrementally lower dosages.
Formally, the marginal effect α0 may be defined implicitly so that a policy’s effect is the sum
of marginal effects from increasing dosages up to its particular dosage profile:

(2.3) β0
k =

∑
k′≤k;P (k′)=P (k)

α0
k′ .

Equation (2.3) can be inverted to recover α0 in terms of β0. An explicit expression for its
terms α0

k is more unwieldly in its full generality, but depending on the policy k, it can be
a difference between two variants’ effects or reflect a complementarity, i.e., the interaction
effect from combining dosages in different arms. This is consistent with the interpretation
that a policy’s effect is the main effects of the highest dosages in each arm, considered
separately, plus the relevant interaction effects.

For each policy k, consider the set of marginal effects on the right hand side of β0
k in

(2.3) that are nonzero: these are the active marginal effects for k, A(k). These are the set of
marginal effects that “influence” the policy k, either as a main effect or as a complementarity.

Assumption 1. Π is an admissible pooling —i.e., Π ∈ P|Λ—if and only if k, k′ ∈ π implies
A(k) = A(k′). That is, only policies influenced by the same set of active marginal effects
may be pooled.

It is easy to see, through (2.3), that admissibility ensures that (i) only policies with equal
treatment effects may be pooled, and (ii) only variants may be pooled (or if non-variant
policies are being pooled, they must be pooled with the control – the null policy). Of
course, given an idiosyncratic instance of unique policy effects β0, there may be other pools
that satisfy (i) and (ii) besides the admissible pools. However, we restrict our attention to
admissible pools since these work generally using only the sign of marginal effects.

Per Assumption 1, the more zeros there are in marginal effects, the more pooling choices
become admissible. We can depict this in a Hasse diagram for a treatment profile. In a Hasse
diagram, a line upwards from variants k to k′ implies k′ > k, and there is no variant k′′ such
that k′ > k′′ > k (in the partial order). The running example is the case of a 2 arm treatment
of 4 intensities (3 nonzero intensities “low,” “medium,” “high”); i.e., M = 2, R = 4 and the
treatment profile where both arms are “on”. Figure 1 depicts the Hasse for this treatment
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profile. Here unique policies are named per their intensity representations; i.e., [r1, r2] where
ri ∈ {1, 2, 3} is the (nonzero) dosage in arm i.

Zeros in the marginals make admissible certain “concatenations” in the Hasse diagram of
policies. This is depicted in Figure 2, where the top panels (A-C) depict the zeros in marginal
effects and the bottom panels (D-F) depict the maximal admissible policy concatenations
they imply (of course subsets of these concatenations will also be admissible).

In Panel A, α[2,1] = α[3,1] = 0, meaning that keeping the intensity fixed as low in arm 2,
there is no marginal contribution of increasing the intensity in arm 1. Panel D depicts how
this makes admissible the concatenation of policies {[1, 1], [2, 1], [3, 1]}, and indeed β[1,1] =
β[2,1] = β[3,1]. The maximal admissible concatenated policy can be called [1 : 3, 1].

In Panel B, α[2,2] = 0. α[2,2] = (β[2,2] − β[2,1]) − (β[1,2] − β[1,1]), there are only main
effects in increasing dosages from low to medium intensities in both arms, and no further
complementarity. Since furthermore α[1,2] = 0, there is no main effect on arm 2 from
increasing low to medium intensity. That is, there is only a main effect in arm 1 from
increasing low to medium intensities. This main effect is nonzero, since α[2,1] ̸= 0. In Panel
E, the maximal admissible concatenations reflect this: {[1, 1], [1, 2]} into {1, 1 : 2}, and
{[2, 1], [2, 2]} into [2, 1 : 2].

The main effect of arm 1 makes inadmissible these concatenated blocks from further
concatenating. This changes in Panel C, where α[2,1] = 0 implies that there is no main effect
in increasing arm 1 from low to medium either. This makes admissible the concatenation
{1, 1 : 2} and [2, 1 : 2] into [1 : 2, 1 : 2].

As illustrated through these examples, zeros in α0 thus show up as admissible policy
concatenations in Hasse diagrams. This motivates the marginal effects regression:

(2.4) y = Xα0 + ϵ.

This is an invertible transformation of (2.1). X can be interpreted as indicators

Xiℓ := 1 {k (i) ≥ ℓ ∩ P (k (i)) = P (ℓ)} .

In other words, X assigns for unit i a “1” for all policy variants that share k (i)’s treatment
profile and are weakly dominated in intensity by k (i) and a “0” otherwise.

The key object of interest is the support of (2.4):

Sα :=
{
j ∈ [K] :

∣∣∣α0
j

∣∣∣ ̸= 0
}
.

Sα is the set of all active marginals for any policy, i.e. Sα = ∪kA(k). Since ST V A ∈ P|Λ

is the maximal admissible pooling, it is the tightest pooling using only Sα and nothing else.
More precisely, it is the coarsest pooling uniformly consistent over α conditional on Sα.
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The idea is to apply a model selection procedure to estimate Sα. In Online Appendix B,
we show how to construct the unique maximally pooled and pruned set ST V A ∈ P|Λ from
Sα.9 The maximality ensures that no contiguous set of intensities thought to have the same
treatment effects are left un-pooled.

2.2. Pooling and Pruning for Support Selection. The next step is to identify the
support Sα. One natural place to start would be to apply LASSO directly to (2.4). However,
this approach can fail to satisfy sign consistency because the marginal effects matrix X

may fail an “irrepresentability criterion” which is necessary for consistent estimation (Zhao
and Yu, 2006). Irrepresentability bounds the acceptable correlations in the design matrix.
Intuitively, it requires that variables that are not in the support are not too strongly
correlated with those that are. Otherwise, an irrelevant variable is “representable” by
relevant variables, which makes LASSO erroneously select it with non-zero probability irrespective
of sample size. We prove by construction that irrepresentability can fail to be satisfied in
Online Appendix C, where we also show by simulation that irrepresentability failures can
become dramatic with increasing R and M . The structure that we exploit in showing the
failure is one in which higher dosage marginals are representable by lower dosage marginals,
violating the condition.

A way out is provided by Jia and Rohe (2015). They show that, under some conditions,
one can estimate the LASSO support by transforming the data to recover irrepresentability.
They demonstrate that a simple left-multiplication (pre-conditioning) can de-correlate the
data (at the expense of inflating variance in the error).

In Proposition 2.1 we demonstrate that in the specific instance of the crossed RCT design
with ordered intensities, the pre-conditioning strategy of Jia and Rohe (2015) can be applied
because the relevant sufficient conditions are met. Specifically, with an RCT, we can exactly
characterize the design matrix and therefore the inflation factor. We can show that the
variance inflation cost is tolerable, in the sense that we can consistently recover the support
and the treatment effects.

The weighting is constructed as follows. Let us take the singular value decomposition of
X := UDV ′ where U is an n×K unitary matrix, D is a K ×K diagonal matrix of singular
values, and V is a K×K unitary matrix. The Puffer transformation—so named for the fish
whose shape is suggested by the geometry of this transformation—is F := UD−1U ′. The
regression of interest is now

(2.5) Fy = FXα+ Fϵ

9Following this same procedure with any estimate Ŝα leads to an estimate ŜT V A of pooled and pruned
policies.
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where Fϵ ∼ N (0, UD−1ΣD−1U ′). As Jia and Rohe (2015) note, this satisfies irrepresentability
since (FX)′ (FX) = I, which is sufficient (Jia and Rohe (2015), Bickel et al. (2009)).

To understand why this works, recall that the matrices U and V ′ can be thought of
as rotations and D as a rescaling of the principal components. So, the transformation F

preserves the rotational elements of X without the rescaling by D and FX = UV ′ as its
singular value decomposition (with singular values of 1).

The reason this is useful is because when a matrix X has correlation, then the ith singular
value of X captures the residual variance of X explained by the ith principal component
after partialling out the variance explained by the first i−1 principal components. So, when
there is high correlation within X, less than K principal components effectively explain the
variation in X and so the later (and therefore lower) singular values shrink to zero. F inflates
the lowest singular values of X so that each of the principal components of the transformed
FX explains the variance in FX equally. In that sense, FX is de-correlated and, for K < n,
is mechanically irrepresentable. The cost is that this effective re-weighting of the data also
amplifies the noise associated with the observations that would have had the lowest original
singular values. Of course if the amplification is too strong, it can hinder efficiency of LASSO
in finite sample and even prevent the sign consistency of LASSO, in the worst case.10

Our setting is particularly amenable to the Puffer transformation since the marginal effects
design matrices are highly structured. In particular, the assignment probabilities to the
various unique treatments are given, and as a result, the correlations with X are bounded
away from 1. This has the implication that the minimum singular value is bounded below
so that under standard assumptions on data generation, LASSO selection is sign consistent.
While this is guaranteed for a sample size that grows in fixed K, the more important test is
whether it works when K goes up with n; we need to show that the Puffer transformation
does not destroy the sign consistency of LASSO selection as the minimal singular value of
X goes to zero as a function of K. In Lemma A.1, we bound the rate at which the minimal
singular value of X can go to zero as a function of K in a crossed RCT such as ours and
Proposition 2.2 below relies on this lemma to then prove that the Puffer transformation
ensures irrepresentability and consistent estimation by LASSO in our context.

We make the following additional assumptions and discuss their restrictiveness below.

Assumption 2 (Design growth). R ≥ 3, K < n, and K = O (nγ) for some γ ∈ [0, 1/2).11

10In K > n cases–not studied here and not having a full characterization in the literature–even
irrepresentability is not immediate and the theory developed is only for special cases (a uniform distribution
on the Stiefel manifold) and a collection of empirically relevant simulations (Jia and Rohe, 2015).
11This ensures support consistency (Proposition 2.1) at exponential rates. It also implies that K2 log(K) =
o(n), which allows for post-LASSO inference under a normal distribution (Proposition 2.3). The latter
requirement stems from the growth rate of K needing to be tempered for the Central Limit Theorem to
operate in this growing parameter regime.
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Assumption 3 (Minimal marginal effect size). |Sα| < K and mink∈Sα |αk| > c > 0 for c
fixed in n.

Assumption 4 (Homoskedasticity). ϵi
iid∼ N (0, σ2), with σ2 > 0 fixed in n.

Assumption 5 (Penalty sequence). Take a sequence λn ≥ 0 such that λn = ω(n−ν) where
0 < ν < 1

2 − γ
12

Assumption 2 restricts the growth of the problem, preventing settings with too many
treatments relative to observations. Without this assumption, the correct support may not
be estimated with probability tending to one, and the post-estimators may not necessarily be
asymptotically normally distributed. In practice, it means that the RCT cannot have cells in
the fully saturated treatment design with very few units assigned to that unique treatment
combination. Assumption 3 is the conventional LASSO-sparsity assumption applied to the
marginal effects formulation. It imposes that adjacent policy variants are either appreciably
different or have no difference (i.e., the so-called “beta-min” assumption in the literature). We
do not handle the case of local alternatives among adjacent variants i.e., very small yet non-
zero differences, but policies that are not variants of each other or are nowhere adjacent are
allowed to be local alternatives as discussed in Section 2.5. Assumption 4 places our theory
under homoskedastic errors following the literature on Puffer transformation. Extension to
heteroskedasticity is left for future work. Finally, Assumption 5 imposes a restriction on the
LASSO-penalties, standard in the regularization literature.

Proposition 2.1. Assume 1-5. Let α̃ be the estimator of (2.5) by LASSO:

α̃ := argmina∈RK ∥Fy − FXa∥2
2 + λn ∥a∥1 .

Then P (sign (α̃) = sign (α0)) = 1− exp(−ω(n(1−2(ν+γ)))→ 1.

In other words the correct support of (2.4) is selected with probability tending to 1
exponentially fast in n.

All proofs are in Appendix A unless otherwise noted.

2.3. Consistency of the TVA Estimator. Having constructed an estimator Ŝα of the
support Sα, the next step is to use Algorithm 2 in Online Appendix B to construct ŜT V A,
the estimated set of pooled and pruned unique policies, and then estimate policy effects.13.
The regression of interest is (2.2). We show this estimator is consistent.14

12ω(·) (“small omega” notation, from the same family of notations as “big O” notation) denotes an
asymptotically loose lower bound. Formally f(n) = ω(g(n)) if and only if limn→∞

f(n)
g(n) =∞.

13Algorithm 2 constructing ŜT V A generalizes the Hasse concatenation examples in Section 2.1.1.
14We thank Adel Javanmard for a helpful discussion of the proof.
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Proposition 2.2. Assume 1-5. Let η̂
ŜT V A

be the post-Puffer LASSO OLS estimator of (2.2)

on support ŜT V A. Then, with probability at least 1−2e− n1−2γ λ2
2σ2 +γ log n = 1− e−ω(n(1−2(ν+γ))) →

1, ∥∥∥η̂
ŜT V A

− η0
ST V A

∥∥∥
∞
≤
√

log n
n1−γ/2 .

2.4. Asymptotic Normality. The post-Puffer LASSO estimators are asymptotically normally
distributed (pointwise) for the following reason. If the correct support, ST V A were always
selected, mechanically the estimators are asymptotically normal.

So, in practice, we need to worry about two errors: (a) the asymptotic distribution of the
estimator with some incorrect support being selected and (b) the asymptotic distribution
of the true estimator when the incorrect support is selected. We show in Appendix A that
both of these terms are vanishing in our setup.

Intuitively, the second term can be ignored. After all, the true estimator itself is asymptotically
normally distributed, so given the very unlikely event of incorrect selection, this term is
asymptotically negligible. The first term requires more work. But again, one can show that
the amount of potential bias accumulated due to selecting the wrong support is slow relative
to the rate of actually estimating the wrong support. 15

Given that these errors can be controlled, we show that the estimator is asymptotically
normally distributed. Note that since the parameter vector is of increasing dimension, the as-
ymptotic normality result must be stated slightly differently than in the usual way. The result
states that any linear combination of any of the estimated parameters, when normalized
properly, converges to the standard normal, which is the infinite dimensional analog to the
Cramer-Wold device (He and Shao, 2000).

Proposition 2.3. Assume 1- 5. Then for η̂
ŜT V A

, the post-Puffer LASSO selection OLS
estimator of (2.2) performed on support ŜT V A, we have

√
nc′

(
η̂

ŜT V A
− η0

ŜT V A

)
/(σ ∥c∥)⇝ N (0, 1) .

for any c ∈ R|ŜT V A|.

15An entirely different approach would be to use a recent focus in the literature on exact post-selection
inference using the observation that the LASSO procedure to select a model generates a polyhedral
conditioning set Lee et al. (2016). This generates a parameter estimator distribution that is a truncated,
rather than complete, normal. In our special environment—a correctly specified linear model, sparse
parameters, restrictions on shrinkage rate of minimal values of parameters on the support—the truncation
points diverge when conditioning on the event that the true model is the estimated model. In the winner’s
curse context an analogous point is made in Andrews et al. (2021), Proposition 3. This means that the
distribution returns to the usual Gaussian. However, we provide a simpler, direct argument where we can
calculate the distribution when the correct support is selected and bound the problematic terms in the event
of poor selection.
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The proof applies the central limit theorem of He and Shao (2000) for the growing number
of parameters regime after controlling the events that the wrong support is selected as in
Javanmard and Montanari (2013).16

It is well-known that one cannot uniformly (over the parameter space) build post-selection
asymptotic distributions (Leeb and Pötscher, 2005, 2008). This is the subject of much
discussion of a larger literature on post-selection inference—interpretations of the post-
estimation procedures and its practical function (Berk et al., 2013; Tibshirani et al., 2016;
Lee et al., 2016). In our context, several remarks are worth making. First, our claim is about
pointwise inference, not uniformity over the parameter space. Second, we have nothing to say
conditional on incorrect selection, hence the non-uniformity. Still, no matter what model is
selected—even if an incorrect one—since in our setting the regressors are always orthogonal,
there is some valid post-selection interpretation in the sense of Berk et al. (2013), but we
do not characterize what occurs in the vanishing probability events. Third, as we recover
the support with probability tending to one, and at an exponential rate, in a practical
sense the non-uniformity occurs only for very small (local to zero) alternatives in the space
of marginals, which are assumed away per Assumption 3.17 Loosely, recall that the non-
uniformity comes up when the probability of correct selection does not go to one, or along
the sequence is local to the event of failed selection. Given the very high rate of correct
selection (tending to one exponentially fast in n), these unsupported local alternatives must
be exceedingly close to the true parameter (the sequence of alternatives converging to the
true parameter at very fast rate in n). See analogous discussion in McCloskey (2020) and
the discussion of (A.1) in that paper.

Indeed, consistent with the theoretical results, as we will show in Online Appendix E.1,
the estimators look normal in practice indicating that the non-uniformity concerns are likely
to not be large in at least many practical cases, in our specific setting. Further, in our
setting, since the elements with the highest effects tend to be selected first, and because of
orthogonality, in practice the large parameter estimates almost always perform well.

2.5. The Effect of the Best Policy. The TVA procedure generates a set of pruned and
pooled policies ŜT V A with post-LASSO estimates η̂

ŜT V A
. This full set of pooled estimates is of

direct interest to the policymaker. We now propose a optional last step, in case a policymaker
is particularly interested in a single “best” policy (based on the sample estimates) and
its estimated performance. This policy is the one in ŜT V A with the highest post-LASSO
estimate:

κ̂⋆ = argmax
κ∈ŜT V A

η̂
ŜT V A,κ

16We again thank Adel Javanmard for a helpful discussion of the proof.
17We are grateful to Adam McCloskey for pointing this out.
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If the true best policy has a (population level) treatment effect that far exceeds that of
next best policy, then with high probability κ̂⋆ is that policy and the post-LASSO estimator
η̂

ŜT V A,κ̂⋆ (and corresponding confidence interval) is its most efficient unbiased estimator. In
that case, the policy that emerge is the best policy, and no further adjustment is needed.

However, if there are other non-pooled policies that perform similarly to the true best
policy, there can be a bias in the estimated effectiveness of the “best” among them because
of the winner’s curse (Andrews et al. (2021)). Specifically, when another policy κ ∈ ŜT V A

has a treatment effect close to κ̂⋆, in the sense that |η0
ŜT V A,κ̂⋆

− η0
ŜT V A,κ

| is small, there is a
chance (due to sampling variation) that they may be incorrectly ranked in the sample: i.e.,
η̂

ŜT V A,κ̂⋆ > η̂
ŜT V A,κ

even though η0
ŜT V A,κ̂⋆

< η0
ŜT V A,κ

. In these close races sampling variation
can end up determining the estimated best policy. Importantly, even if the ranking is correct,
η̂

ŜT V A,κ̂⋆ will be biased upwards relative to the true effect η0
ŜT V A,κ̂⋆

Given that such a winner’s curse arises only in close races, and our assumption of sparse
marginal effects (Assumption 3) and steps of pruning and pooling, the winner’s curse arises
primarily when non-variant policies have similar performance. For example, Assumption
3 doesn’t prevent the pooled policy (Any information hubs, No SMS, No incentives) from
having a similar impact as (No seeds, Any reminders, Any slope incentives), as these emerge
from marginals in different treatment profiles, and can’t be pooled. Were these policies
to both have similar and near maximum impacts, then a winner’s curse can arise in their
horserace.18

The relevant notion of “similar effect” is a local alternative:

Definition 2.1. Pooled policies κ, κ′ are local alternatives if there is a constant rκκ′ fixed
in n such that

(2.6) η0
ST V A,κ = η0

ST V A,κ′ + rκκ′
√
n
.

This definition holds asymptotically, in that local alternatives have similar effects for any
sample size. As we have shown, there can be several local alternatives when Assumption 3
holds. We assume a fixed number of local alternatives, and that these are the policies with
the most (mutually) similar effects.

Assumption 6. There are at most q <∞, independent of n, pairs of local alternatives, i.e.,
pairs κ, κ′ ∈ ST V A such that η0

ST V A,κ = η0
ST V A,κ′ + rκκ′√

n
where rκκ′ fixed in n. All other policy

pairs are further separated, i.e.. separated by at least ω( 1√
n
).

This nests q = 0, when there are no local alternatives. The best policy is then well
separated from the next best policy and the post-LASSO estimates η̂

ŜT V A,κ∗ don’t need any
18In fact, even within a treatment profile, two pooled policies can still have similar treatment effects, in spite
of Assumption 3. It can occur if they are activated by marginals from sufficiently different parts of the Hasse
diagram. All these cases are formalized in Proposition G.1 of the Online Appendix G.
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adjustment. One is free to assume this or assess it ex-post. For q > 0, there is a chance that
the best policy is local alternative to others, so there may be a winner’s curse.

We apply the hybrid estimator of Andrews et al. (2021) which attenuates the post-LASSO
estimate. It balances performance with a small amount of median bias tolerance. Note
that the main text of Andrews et al. (2021) requires that the estimators are exactly jointly
normally distributed. They present two extensions, one for a conditioning event such as
model-selection and the other for asymptotic normality. They do not work out the case with
both issues present, as in our case. So we proceed with the assumption as in their main
text, treating η̂ŜT V A

as normally distributed (which our simulations support as a reasonable
approximation). Extending their work is beyond the scope of this paper.

We can apply Proposition 6 of Andrews et al. (2021) directly. This means we can pick
two significance levels, α > β and use this to characterize confidence intervals and bias for
the hybrid estimator. The hybrid estimator will be median unbiased (with a bias bounded
by β/2). The (conditional) confidence interval has coverage (1− α)/(1− β). See Appendix
G and Andrews et al. (2021) for details.

The winner’s curse-corrected estimators of Andrews et al. (2021) are not a cure-all. They
cannot correct for ordinal misrankings of policies, and work for case in which the similar
effect policies are Θ( 1√

n
) apart.19 Nevertheless, we include discussion of such an adjustment

because it helps debias estimates and lets us err on the side of conservative inference. The
hybrid estimator has the appealing property that it rapidly converges to the post-LASSO
estimate whenever the best policy is well separated from the next best policy in the sample.
We can thus view it as insurance whenever we estimate the best policy, letting the data
decide if the winner’s curse risk is appreciable and automatically correcting for it to the
extent possible when it arises.

2.6. Summary of TVA. A summary of the overall procedure is presented in Algorithm 1.

3. Simulation Performance

Here we run simulations in the environment described in Section 2 – namely, when a sparse
set of policies have meaningful and meaningfully different impacts. In Sections 3.1 and 3.2
we outline the simulation setup and performance measures and show in Section 3.3 that TVA
outperforms several other standard approaches. The relative deficiencies of other estimators
also highlight the features that give TVA its edge.

3.1. Simulation Setup. The idea of the simulation setup is to generate simulated design
matrices from marginal specifications (2.4) that resemble the data, score these on certain
metrics, and aggregate these scores into measures of performance for sample size n.
19Note that conditional on correct support selection ŜT V A = ST V A, the post-LASSO estimates of the best
policy, even if it is selected incorrectly, must be Θ(1/

√
n) of the true best policy effect.
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Algorithm 1: Estimating Treatment Effects by Treatment Variant Aggregation
(1) Given treatment assignment matrix T , calculate the treatment profile and marginal

dosage intensity matrix X.
(2) Estimate Ŝα := {j ∈ [K] : |α̃j| ≠ 0} by estimating (2.4) through a Puffer

transformed LASSO.
(3) Calculate marginal effects support ŜT V A from Ŝα using Algorithm 2 in Online

Appendix B.
(4) Estimate pooled and pruned treatment effects of unique (relevant) policies, η̂

ŜT V A
,

using regression (2.2).
(5) Optional: To estimate the best policy in ŜT V A, select κ̂⋆ = argmax

κ∈ŜT V A
η̂

ŜT V A,κ
.

Either report the OLS estimate η̂
ŜT V A,κ⋆ , or, if anticipating a winner’s curse,

construct the hybrid estimator η̂hyb
ŜT V A,κ̂⋆

with nominal size α and median bias
tolerance β/2.

(1) Fix R = (5, 5, 3),M = 3 and σ = 2.3: parameters are chosen to loosely mimic our
experiment where 3 treatment arms have asymmetric intensities leading to 75 unique
policies and where σ is chosen such that the R2 of the post-LASSO regression matches
the experiment for a similar sample size.

(2) The simulation results are plots of performance m̂(n) against sample size n where n
ranges between 1,000 and 10,000.20

(3) These scores m̂(n) are generically computed as follows.
(a) A set C of true supports of the marginal specification (2.4) is randomly chosen.

Each member Si
α ∈ C is a particular support or “configuration” and each configuration

has fixed support size |Si
α| = M . Specifically, each configuration C is constructed

by randomly sampling M covariates of X. Furthermore, if Si
α = (k1, k2, .., kM) in

some given order, we assign coefficients αkj
= 1+4 · j−1

M−1 . That is, these nonzero
coefficients are linearly spaced between 1 and 5. Thus each configuration fully
specifies the set of coefficients α for (2.4).

(b) For each Si
α ∈ C, a set SSi

α
(n) of simulations (design matrices) is generated

based on the coefficients specified by the configuration, and the Gaussian noise,
with sample size n. For each simulation ŝ(n) ∈ SSi

α
(n), it is scored by a metric

m(ŝ(n)) that will be specified.
(c) These scores are aggregated over simulations SSi

α
(n), and then aggregated again

over configurations C, to produce the aggregated performance score m̂(n).

3.2. Performance Measures. Denoting by Ŝi
α(ŝ(n)) the model selection estimator for Si

α

for simulation ŝ(n), we use the following performance metrics throughout our simulations.

20For some computationally intensive simulations n is logarithmically spaced.
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Support selection accuracy:

m(ŝ(n)) := |Ŝ
i
α(ŝ(n)) ∩ Si

α|
|Ŝi

α(ŝ(n)) ∪ Si
α|
.

This is a value between 0 and 1 that increases with support coverage, and is 1 if and only
if the support is correctly selected. To construct the aggregated metric m̂(n) it is averaged
over the simulations per configuration, and then averaged again over configurations.

“Some” best policy inclusion accuracy:

m(ŝ(n)) =

1 if κ̂i⋆(ŝ(n)) ∩ κi⋆ ̸= ∅
0 otherwise

where κi⋆ = argmaxκ∈Si
T V A

ηST V A,κ denotes the true best pooled policy in the marginal
effects support Si

T V A (uniquely determined from Si
α). This measure is again averaged over

simulations per configuration, and then averaged over configurations. The final metric
therefore gives the share of simulations per n where at least one true best policy was pooled
into the estimated best pooled policy.

Minimum dosage best policy inclusion accuracy:

m(ŝ(n)) =

1 if ki⋆min ∈ κ̂i⋆(ŝ(n))
0 otherwise

where ki⋆min denotes the true minimum dosage best policy.21 Once aggregated this measure
captures the share of simulations, per n where the minimum dosage best policy was included
in the estimated best pool.

Mean squared error (of best policy effect): For each simulation ŝ(n), the estimated
best policy treatment effect is scored by its error with respect to the true treatment effect:

m(ŝ(n)) := η̂hyb
ŜT V A,κ̂⋆

− ηST V A,κ⋆ .

And thus m̂(n) is simply the estimated MSE:

m̂(n) := 1
|C|

∑
C

1
|SSi

α
(n)|

∑
S

Si
α

(n)
m2(ŝ(n)).

21The “intersection” and “inclusion” operators for the best policy inclusion measures are to be understood
in the following way: suppose the true best policy κi⋆ ∈ Si

T V A pools together m policies as per Si
α that

we can organize into a set S1 = {ki⋆
1 , · · · , ki⋆min, · · · , ki⋆

m}. Equivalently we organize into S2 the n policies
composing the estimated best pool as per Ŝi

α(n). Then κ̂i⋆(ŝ(n)) stands for S2 and κi⋆ for S1.
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3.3. Performance of TVA. First of all, simulation performance of TVA attests to its
main theoretical properties: support consistency, best policy estimation consistency, and
normally distributed coefficient estimates. This is depicted in Figure 3 (panels A,B,D)
and discussed in Online Appendix E.1. In what follows, we primarily make the case for
the strong performance of TVA relative to its most straightforward alternative, a direct
application of OLS. In our Online Appendix E.2 we provide comparisons for further LASSO-
based alternative estimation strategies, the results of which are summarized below.

3.3.1. Direct OLS. An intuitive route for inference in this setting is estimating the unique
policy specification (2.1) using only an application of OLS and nothing else (a strategy we
call “direct OLS”). Since this is a fully saturated regression, this estimator has no theoretical
issues with convergence nor with interpretation. Rather, this is about performance in the
finite sample in the environment we describe. Specifically, it is worth noting that without
additional restrictions on the parameter space, OLS yields uniformly most powerful tests.
However, since our approach is different from deriving optimal tests and involves model
selection, and because additional restrictions are imposed, OLS may not be the best possible
method, as will be demonstrated in the simulations. Most obviously, there is a loss of power
in separately estimating the impact of 75 distinct interventions.

Figure 3, panels B-D, documents three main inadequacies of direct OLS on the question
of selecting and estimating best policy effects: (1) it fails at consistently identifying the
minimum dosage best policy, (2) the estimates of best policy exhibit a stronger winner’s
curse (3) the attenuations from applying Andrews et al. (2021) are large. More specifically,
panel A shows that direct OLS (orange) does almost as well as TVA (blue) in estimating as
best policy some policy that is part of the true best pooled policy, but it effectively picks the
dosage at random; thus selection of the minimum dosage hovers at around 36.67%. Panel
C exhibits a strong winner’s curse, which is to be expected in a situation with numerous
candidates for “best policy”, since the odds that a particularly large shock was drawn and
thrust one to the top is quite high. The fact that the resulting coefficients are over-attenuated
can be inferred from Panel D, where the attenuated best policy MSE (yellow triangles)
remains large (of 0.53) even for large n.22 In contrast, the winner’s curse attenuations for
TVA are much more modest, because of reduction of the number of competing policies and
therefore greater separation between them.

Besides the specific issue of best policy estimation, direct OLS has low power. This
is depicted in Figure E.1, where simulated OLS estimates of all the unique policies (2.1)
contrast with the pruned and pooled estimation (2.2) (refer to Online Appendix E).

22Recall that while Andrews et al. (2021) estimators are consistent, this assumes some local separation of
parameters, which is not guaranteed in these neck-and-neck competitions.
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3.3.2. Naive LASSO. There are two ways we could “naively” apply LASSO. The first is to
disregard pooling, and apply LASSO on the unique policy specification (2.1) because sparse
dosages might also mean a sparse set of policies. While there is no theoretical issue with
this procedure in terms of model consistency, using this for policy estimation leads to much
the same performance limitations as direct OLS with regards to best policy estimation,
namely a persistently high best policy MSE stemming from overly severe correction from
Andrews et al. (2021)’s winner’s curse adjustment. Figure E.2 from our Online Appendix,
contrasts this “No pooling, only pruning” version of LASSO to TVA on best policy estimation
and documents these patterns in detail. The second way to “naively” apply LASSO is
to consider both pooling and pruning as important, but adopt a sign inconsistent model
selection procedure by applying LASSO directly on (2.4) without a Puffer transformation.
As expected, simulations attest to inconsistent support selection though MSE on the best
policy is comparable to TVA. Importantly, it fails to select the minimum dosage best policy
with substantial probability relative to TVA (refer to Figure E.3 in Online Appendix E).

3.3.3. Debiased LASSO. Because we are interested in high dimensional inference23 one alternative
to a two step process of model selection and inference is the so-called “debiased LASSO”
(Zhang and Zhang (2014), Javanmard and Montanari (2014), Javanmard and Montanari
(2018), Van De Geer (2019)). The basic idea is that since the downward bias in LASSO
is estimable, we can reverse it. A feature, however, is that these debiased coefficients are
almost surely never exactly zero, so that there is no question of sparsity. We thus only
need to consider applying debiased LASSO to (2.1). In Figure E.4 of our Online Appendix,
we show that the debiased LASSO procedure suffers from the same limitations as direct
OLS estimation, especially with regards to best policy estimation (high MSE due to over-
attenuation of the winner’s curse).

3.3.4. “Off the Shelf” Bayesian approaches: Spike and Slab LASSO (Nie and Ročková,
2022). The rules governing admissible pooling encodes the econometrician’s prior about
the environment as does regularization. This raises the possibility of a Bayesian framework.
Indeed, LASSO estimates have a Bayesian interpretation with Laplace priors. One can
ask whether a more sophisticated, “explicitly” Bayesian approach can address our final
objectives. This paradigmatically different route is the topic of future work. In Section E.2.4
of our Online Appendix, we just show that“off the shelf” Bayesian approaches are unlikely
to help. In particular, we show that a direct application of spike and slab formulations –
the most intuitively relevant method – underperforms relative to our TVA procedure with a
performance pattern similar to that of applying Naive LASSO to the marginal specification
(2.4).
23Albeit, we are still in a K < n regime (mechanically since the number of treatments cannot exceed the
number of units), sometimes called low dimensional with diverging number of parameters.
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Taken together, these simulation results make the case that TVA is both a powerful and
robust candidate for our setting. Moreover, even under different sparsity and effect size
relaxations, TVA is still strong as demonstrated in Online Appendix E.3. In particular it
does better than the next best practical alternative of applying naive LASSO to the marginal
specification (2.4).

4. Increasing immunization in Haryana: Context, Experimental Design, and
Data

We now apply this method to a large-scale experiment conducted in collaboration with
the government of Haryana to help them select the most effective policy bundle to stimulate
demand for immunization. The objective of the experiment was explicitly to select the best
policy to scale up, after one year-long experiment with 75 potentially distinct treatments,
making it an excellent application. Indeed, we developed the method in order to analyze
this data.

4.1. Context. This study took place in Haryana, a populous state in North India, bordering
New Delhi. In India, a child between 12 and 23 months is considered to be fully immunized
if he or she receives one dose of BCG, three doses of Oral Polio Vaccine (OPV), three doses
of DPT, and at least one dose of a measles vaccination. India is one of the countries where
immunization rates are puzzlingly low. According to the 2015-2016 National Family Health
Survey, only 62% of children were fully immunized (NFHS, 2016). This is not due to lack of
access to vaccines or health personnel. The Universal Immunization Program (UIP) provides
all vaccines free of cost to beneficiaries, and vaccines are delivered in rural areas–even in the
most remote villages. Immunization services have made considerable progress over the past
few years and are much more reliably available than they used to be. During the course of
our study we found that the monthly scheduled immunization session were almost always
run in each village.

The central node of the UIP is the Primary Health Centre (PHC). PHCs are health
facilities that provide health services to an average of 25 rural and semi-urban villages with
about 500 households each. Under each PHC, there are approximately four sub-centres
(SCs). Vaccines are stored and transported from the PHCs to either sub-centers or villages
on an appointed day each month, where there is a mobile clinic where the Auxiliary Nurse
Midwife (ANM) administers vaccines to all eligible children. A local health worker, the
Accredited Social Health Activist (ASHA), is meant to help map eligible households, inform
and motivate parents, and take them to the immunization session. She receives a small fee
for each shot given to a child in her village.

Despite this elaborate infrastructure, immunization rates are particularly low in North
India, especially in Haryana. According to the District Level Household and Facility Survey,
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the full immunization coverage among 12-23 months-old children in Haryana fell from 60%
in 2007-08 to 52.1% in 2012-13 (DLHS, 2013).

In the district where we carried out the study, a baseline study revealed even lower
immunization rates (the seven districts that were selected were chosen because they have
low immunization). About 86% of the children (aged 12-23 months) had received at least
three vaccines. However, the share of children whose parents had reported they received the
measles vaccine (the last in the sequence) was 39%, and only 19.4% had received the vaccine
before the age of 15 months, while the full sequence is supposed to be completed in one year.

After several years focused on improving the supply of immunization services, the government
of Haryana was interested in testing out strategies to improve household take-up of immunization,
and in particular, their completion of the full immunization schedule. With support from
USAID and the Gates Foundation, they entered into a partnership with J-PAL to test out
different interventions. The final objective was to pick the best policy possibly scale up
throughout the state.

Our study took place in seven districts where immunization was particularly low. In
four districts, the full immunization rate in a cohort of children older than the ones we
consider, was below 40%, as reported by parents (which is likely a large overestimate of the
actual immunization rate, given that children get other kinds of shots and parents often
find it hard to distinguish between them, as noted in Banerjee et al. (2021)). Together, the
districts cover a population of more than 8 million (8,280,591) in more than 2360 villages,
served by 140 PHCs and 755 SCs. The study covered all these PHCs and SCs, and are
thus fully representative of the seven districts. Given the scale of the project, our first step
was to build a platform to keep a record of all immunizations. Sana, an MIT-based health
technology group, built a simple m-health application that the ANMs used to register and
record information about every child who attended at least one camp in the sample villages.
Children were given a unique ID that made it possible to track them across visits and
centers. Overall, 295,038 unique children were recorded in the system, and 471,608 vaccines
were administered. Data from this administrative database is our main source of information
on immunization and we discuss its reliability below. More details on the implementation
are provided in the publicly available progress report (Banerjee et al., 2021).

4.2. Interventions. The study evaluates the impact of several nudges on the demand for
immunization: small incentives, targeted reminders, and local ambassadors.

4.2.1. Incentives. When households are indifferent or have a propensity to procrastinate,
small incentives can offset any short term cost of getting to an immunization camp and
lead to a large effect on immunization. Banerjee et al. (2010) shows that small incentives for
immunization in Rajasthan (a bag of lentils for each shot and a set of plates for completing the
course) led to a large increase in the rates of immunization. Similar results were subsequently
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obtained in other countries, suggesting that incentives tend to be effective (Bassani et al.,
2013; Gibson et al., 2017),(Chandir et al., 2022). In the Indian health system, households
receive incentives for a number of health behavior, including hospital delivery, pre-natal care
visits, and, in some states (like Tamil Nadu), immunization.

The Haryana government was interested in experimenting with incentives. The incentives
that were chosen were mobile recharges for pre-paid phones, which can be done cheaply
and reliably on a very large scale. Almost all families have at least one phone and the
overwhelming majority of the phones are pre-paid. Mobile phone credits are of uniform
quality and fixed price, which greatly simplify procurement and delivery.

A small value of mobile phone credit was given to the caregivers each time they brought
their child to get immunized. Any child under the age of 12 months receiving one of the five
eligible shots (i.e., BCG, Penta-1, Penta-2, Penta-3, or Measles-1), was considered eligible
for the incentives intervention. Mobile recharges were delivered directly to the caregivers’
phone number that they provided at the immunization camp. Seventy (out of the 140) PHCs
were randomly selected to receive the incentives treatment.

In Banerjee et al. (2010), only one reward schedule was experimented with. It involved a
flat reward for each shot plus a set of plates for completing the immunization program. This
left many important policy questions pending: does the level of incentive make a difference?
If not, cheaper incentives could be used. Should the level of rewards increase with each
immunization to offset the propensity of the household to drop out later in the program?

To answer these questions, we varied the level of incentives and whether they increased
over the course of the immunization program. The randomization was carried out within
each PHC, at the subcenter level. Depending on which sub-center the caregiver fell under,
she would receive one of the following.

(1) Flat incentive, high: INR 90 ($1.34 at the 2016 exchange rate, $4.50 at PPP) per
immunization (INR 450 total).

(2) Sloped incentive, high: INR 50 for each of the first three immunizations, 100 for the
fourth, 200 for the fifth (INR 450 total).

(3) Flat incentive, low: INR 50 per payment (INR 250 total).
(4) Sloped incentive, low: INR 10 for each of the first three immunizations, 60 for the

fourth, 160 for the fifth (INR 250 total).

Even the high incentive levels here are small and therefore implementable at scale, but
they still constitute a non-trivial amount for the households. The high incentive level was
chosen to be roughly equivalent to the level of incentive chosen in the Rajasthan study: INR
90 was roughly the cost of a kilogram of lentils in Haryana during our study period. The
low level was meant to be half of that (rounded to INR 50 since the vendor could not deliver
recharges that were not multiple of 10). This was meaningful to the households: INR 50



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 24

corresponds to 100 minutes of talk time on average. The provision of incentives was linked
to each vaccine. If a child missed a dose, for example Penta-1, but then came for the next
vaccine (in this case, measles), they would receive both Penta-1 and measles and get the
incentives for both at once, as per the schedule described above.

To diffuse the information on incentives, posters were provided to ANMs, who were asked
to put them up when they set up for each immunization session. The village ASHAs and
the ANMs were also supposed to inform potential beneficiaries of the incentive structure and
amount in the relevant villages. However, there was no systematic large scale information
campaign, and it is possible that not everybody was aware of the presence or the schedule
of the incentives, particularly if they had never gone to a camp.

4.2.2. Reminders. Another frequently proposed method to increase immunization is to send
text message reminders to parents. Busy parents have limited attention and reminders can
put the immunization back at the “top of the mind.” Moreover, parents do not necessarily
understand that the last immunization in the schedule (measles) is for a different disease and
is at least as important as the previous ones. SMSs are also extremely cheap and easy to
administer in a population with widespread access to cell phones. Even if not everyone gets
the message, the diffusion may be reinforced by social learning, leading to faster adoption.24

The potential for SMS reminders is recognized in India. The Indian Academy of Pediatrics
rolled out a program in which parents could enroll to get reminders by providing their cell
phone number and their child’s date of birth. Supported by the Government of India, the
platform planned to enroll 20 million children by the end of 2020.

Indeed, text messages have already been shown to be effective to increase immunization
in some contexts. For example, a systematic review of five RCTs finds that reminders for
immunization increase take up on average (Mekonnen et al., 2019). However, it remains true
that text messages could have no effect or even backfire if parents do not understand the
information provided and feel they have no one to ask (Banerjee et al., 2018). Targeted text
and voice call reminders were sent to the caregivers to remind them that their child was due
to receive a specific shot. To identify any potential spillover to the rest of the network, this
intervention followed a two step randomization. First, we randomized the study sub-centers
into three groups: no reminders, 33% reminders, and 66% reminders. Second, after their first
visit to that sub-center, children’s families were randomly assigned to either get the reminder
or not, with a probability corresponding to the treatment group for their sub-centers. The
children were assigned to receive/not receive reminders on a rolling basis.

24See, e.g., Rogers (1995); Krackhardt (1996); Kempe, Kleinberg, and Tardos (2003); Jackson (2008); Iyengar,
den Bulte, and Valente (2010); Hinz, Skiera, Barrot, and Becker (2011); Katona, Zubcsek, and Sarvary (2011);
Jackson and Yariv (2011); Banerjee, Chandrasekhar, Duflo, and Jackson (2013); Bloch and Tebaldi (2016);
Jackson (2017); Akbarpour, Malladi, and Saberi (2017).
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The following text reminders were sent to the beneficiaries eligible to receive a reminder.
In addition, to make sure that the message would reach illiterate parents, the same message
was sent through an automated voice call.

(1) Reminders in incentive-treatment PHCs:
“Hello! It is time to get the «name of vaccine» vaccine administered for your
child «name». Please visit your nearest immunization camp to get this vaccine
and protect your child from diseases. You will receive mobile credit worth «range
for slope or fixed amount for flat» as a reward for immunizing your child.”

(2) Reminders in incentive-control PHCs:
“Hello! It is time to get the «name of vaccine» vaccine administered for your child.
Please visit your nearest immunization camp to get this vaccine and protect your
child from diseases.”

4.2.3. The Immunization Ambassador: Network-Based Seeding. The goal of the ambassador
intervention was to leverage the social network to spread information. The objective was
to identify influential individuals who could relay to villagers both the information on
the existence of the immunization camps, and, wherever relevant, the information that
incentives were available. Existing evidence shows that people who have a high centrality in a
network (e.g., they have many friends who themselves have many friends) are able to spread
information more widely in the community (Katz and Lazarsfeld, 1955; Aral and Walker,
2012; Banerjee et al., 2013; Beaman et al., 2018; Banerjee et al., 2019). Further, members
in the social network are able to easily identify individuals, whom we call information hubs,
who are the best placed to diffuse information as a result of their centrality as well other
personal characteristics (social mindedness, garrulousness, etc.)(Banerjee et al., 2019).

This intervention took place in a subset of 915 villages where we collected a full census
of the population (see below for data sources). Seventeen respondents in each village were
randomly sampled from the census to participate in the survey, and were asked to identify
people with certain characteristics (more about those later). Within each village, the six
people nominated most often by the group of 17 were recruited to be ambassadors for the
program. If they agreed, a short survey was conducted to collect some demographic variables,
and they were then formally asked to become program ambassadors. Specifically, they
agreed to receive one text message and one voice call every month, and to relay it to their
friends. In villages without incentives, the text message was a bland reminder of the value of
immunization. In villages with incentives, the text message further reminded the ambassador
(and hence potentially their contacts) that there was an incentive for immunization.

While our previous research had shown that villagers can reliably identify information
hubs, a pertinent question for policy unanswered by previous work is whether the information
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hubs can effectively transmit messages about health, where trust in the messengers may be
more important than in the case of more commercial messages.

There were four groups of ambassador villages, which varied in the type of people that
the 17 surveyed households were asked to identify. The full text is in Appendix L.

(1) Random seeds: In this treatment arm, we did not survey villages. We picked six
ambassadors randomly from the census.

(2) Information hub seed: Respondents were asked to identify who is good at relaying
information.

(3) Trusted seed: Respondents were asked to identify those who are generally trusted to
provide good advice about health or agricultural questions

(4) Trusted information hub seed: Respondents were asked to identify who is both trusted
and good at transmitting information

4.3. Experimental Design. The government was interested in selecting the best policy, or
bundle of policies, for possible future scale up. We were agnostic as to the relative merits of
the many available variants. However, we believed that there could be significant interactions
between different policies. For example, our prior was that the ambassador intervention was
going to work more effectively in villages with incentives, because the message to diffuse was
clear. We therefore implemented a completely cross-randomized design, as illustrated in our
Online Appendix Figure H.1.

We started with 2,360 villages, covered by 140 PHCs, and 755 sub-centers. The 140 PHCs
were randomly divided into 70 incentives PHCs, and 70 no incentives PHCs (stratifying
by district). Within the 70 incentives PHCs, we randomly selected the sub-centers to be
allocated to each of the four incentive sub-treatment arms. Finally, we only had resources to
conduct a census and a baseline exercise in about 900 villages. We selected about half of the
villages from the coverage area of each subcenter, after excluding the smallest villages. Only
among the 915 villages did we conduct the ambassador randomization: after stratifying by
sub-center, we randomly allocated the 915 villages to the control group (no ambassador) or
one of the four ambassador treatment groups.

In total, we had one control group, four types of incentives interventions, four types of
ambassador interventions, and two types of SMS interventions. Since they were fully cross-
randomized (in the sample of 915 villages), we had 75 potential policies, which is large even
in relation to our relatively large sample size. Our goal is to identify the most effective and
cost-effective policies and to provide externally valid estimates of the best policy’s impact,
after accounting for the winner’s curse problem. Further, we want like to identify other
effective policies and answer the question of whether different variants of the policy had the
same or different impacts.
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4.4. Data.

4.4.1. Census and Baseline. In the absence of a comprehensive sampling frame, we conducted
a mapping and census exercise across 915 villages falling within the 140 sample PHCs. To
conduct the census, we visited 328,058 households, of which 62,548 households satisfied our
eligibility criterion (children aged 12 to 18 months). These exercises were carried out between
May and November 2015. The data from the census was used to sample eligible households
for a baseline survey. We also used the census to sample the respondent of the ambassador
identification survey (and to sample the ambassadors in the “random seed” villages). Around
15 households per village were sampled, resulting in data on 14,760 households and 17,000
children. The baseline survey collected data on demographic characteristics, immunization
history, attitudes and knowledge and was conducted between May and July 2016. A village-
level summary of baseline survey data is given in Appendix K.

4.4.2. Outcome Data. Our outcomes of interest are the number of vaccines administered
for each vaccine every month, and the number of fully immunized children every month.
The main analysis of this paper focuses on the number of children who received the measles
vaccines in each village every month. The measles vaccine is the last vaccine in the immunization
schedule, and the ANMs check the immunization history and administer missing vaccines
when a child is brought in for this vaccine. As a result, it is a good proxy for a child being
fully immunized.

For our analysis, we use administrative data collected by the ANM using the e-health
application on the tablet, stored on the server, to measure immunization. At the first visit,
a child was registered using a government provided ID (or in its absence, a program-generated
ID) and past immunization history, if any. In subsequent visits, the unique ID was used to
pull-up the child’s details and update the data. Over the course of the program, about
295,038 children were registered, yielding a record of 471,608 immunizations. We use the
data from December 2016 to November 2017. We do this because of a technical glitch in the
system–the SMS intervention was discontinued from November 2017, although the incentives
and information hub interventions were continued a little longer, through March 2018.

Since this data was also used to trigger SMS reminders and incentives, and for the
government to evaluate the nurses’ performance,25 it was important to assess its accuracy.
Hence, we conducted a validation exercise, comparing the administrative data with random
checks, as described in Online Appendix J. The data quality appears to be excellent. Finally,
one concern (particularly with the incentive program) is that the intervention led to a pattern
of substitution, with children who would have been immunized elsewhere (in the PHC or
at the hospital) choosing to be immunized in the camp instead. To address this issue,
25Aggregated monthly reports generated from this data replaced the monthly reports previously compiled
by hand by the nurses.
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we collected data immediately after the intervention on a sample of children who did not
appear in the database (identified through a census exercise), to ascertain the status of
their immunization. In Appendix I, we show that there does not appear to be a pattern of
substitution, as these children were not more likely to be immunized elsewhere.

Below, the dependent variable is the number of measles shot given in a village in a month
(each month, one immunization session is held at each site). On average, in the entire
sample, 6.16 measles shot were delivered per village every month (5.29 in the villages with
no intervention at all). In the sample at risk for the ambassador intervention (which is our
sample for this study) 6.94 shots per village per month were delivered.

4.5. Interventions Average Effects. In this section, we present the average effects of the
interventions using a standard regression without interactions.

We focus on the sample of census villages used throughout our analysis - which are the
villages where the ambassador intervention was also administered - and run the following
specification:

ydsvt = α + β′Incentives + γ′SMSs + δ′Ambassadorv + υdt + ϵdsvt.

We weight these village-level regressions by village population, and standard errors are
clustered at the SC level.26

The results (reported in Banerjee et al. (2019)) are depicted graphically in Figure 4 and
show that, on average, using information hubs (“gossips” in that paper) as ambassadors has
positive effects on immunization: 1.89 more children receive a measles vaccine on a base of
7.32 in control in this sample (p = 0.04). This is nearly identical to the effect of the high-
powered, sloped incentive, though this intervention is considerably cheaper. In contrast,
none of the other ambassador treatments–random seeding, seeding with trusted individuals,
or seeding with trusted information hubs–have benefits statistically distinguishable from zero
(p = 0.42, p = 0.63, and p = 0.92 respectively) and the point estimates are small, as well.
To ensure that conclusions are not simply an artifact of this particular subsample, we show in
Online Appendix H that these results are robust to running the analysis on the full sample.

The conclusion from this analysis is that financial incentives can be effective to boost
demand for immunization, but only if they are large enough and increase with each immunization.
Of the two cheaper interventions, the SMS interventions, promoted widely in India and
elsewhere, seem disappointing. These results are similar to those found in Pakistan by
Chandir et al. (2022) which also test various models of incentives and SMS, with small
differences. There, SMS alone has a statistically significant, but small impact on full

26This is the highest level at which a treatment is administered, so clustering at this level should yield the
most conservative estimate of variance. In practice clustering at the village level or SC level does not make
an appreciable difference.
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immunization. Incentives are more effective, and the level of incentives matter (although
in that setting, the slope does not matter).

In our setting, leveraging the community by enrolling local ambassadors, selected using
the cheap procedure of asking a few villages who are good information hubs, seems to be
as effective as using incentives. It leads to an increase of 26% in the number of children
who complete the schedule of immunization every month. This alone could increase full
immunization rate in those districts from 39% (our baseline full immunization rate, as
reported by parents) to nearly 49%. This analysis does not fully answer the policymaker’s
question, however. It could well be that the interventions have powerful interactions with
each other, which has two implications. First, the main effect, as estimated, does not tell
us what the impact of the policy would be in Haryana if implemented alone (because as it
is, they are a weighted average of a complicated set of interacted treatments). Second, it
is possible that the government could do better by combining two (or more) interventions.
For example, our prior in designing the information hub ambassador intervention (described
in our proposal for the project)27 was that it would have a positive interaction effect with
incentives, because it would be much easier for the information hubs to relay hard information
(there are incentives) than a vaguer message that immunization is useful. The problem,
however, is that there are a large number of interventions and interactions: we did not—nor
was it feasible to—think through ex-ante all of the interactions that should or should not
be included, which is why in Banerjee et al. (2019), we only reported the average effects of
each different type of seeds in the entire sample, without interactions. In the next section,
we adapt our disciplined approach to select which ones to include, and to then estimate the
impact of the “best” policy.

5. Results

5.1. Identifying effective policies.

5.1.1. Method. We adapt the TVA procedure for our case. We allow only some pooling
within arms depending on the nature of the sub-treatment. In the incentive arms, slope and
flat incentives are not allowed to pool, but the amount of money (high or low) is considered to
be a dosage. In the ambassador arms, we do not allow pooling between random selection of
ambassadors, trusted ambassador, and information hub. Within information hubs, however,
we consider that the “trusted information hub” is an increased dosage of information hub,
so these may pool with one another.

To summarize, interventions “information hubs,” “slope,” “flat,” and “SMS” are found in
two intensities. The marginal specification (2.4) therefore looks like

27https://doi.org/10.1257/rct.1434-4.0

https://doi.org/10.1257/rct.1434-4.0
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ydsvt = α0 + αSMSSMSs + αH,SMSHigh SMSs

+ αSlopeSlopes + αH,SlopeHigh Slopes + αF latFlats + αH,F latHigh Flats

+ αRRandomv + αHInfo Hub (All)v + αT Trustv + αT HTrusted Info Hubv

+ α′
XXsv + vdt + ϵdsvt,

where we have explicitly listed the variables in “single arm” treatment profiles. Xsv is a
vector of the remaining 64 marginal effects variables in “multiple arm” treatment profiles,
and vdt is a set of district-time dummies. Here SMS refers to “any SMS.”

Our Puffered LASSO model selection estimation follows the recommended implementation
in Rohe (2014), which uses a sequential backward elimination version of LASSO (variables
with p-values above some threshold are progressively deselected) on the PufferN transformed
variables (the N refers to a further right multiplication of Puffer transformed variables with
a diagonal matrix that aids in correcting for the heteroskedasticity induced by the Puffer
transformation). We select penalties λ for both regressions (number of immunizations and
immunizations per dollar) to minimize a Type I error, which is particularly important to
avoid in the case of policy implementation.28 This makes sense because it is extremely
problematic to have a government introduce a large policy based on a false positive. This
reasoning is elaborated in Appendix D.

This gives Ŝα, an estimate of the true support set Sα of the marginal effects specification
(2.4). We then generate a use of unique pooled policy set ŜT V A (following the procedure we
outline in Algorithm 2 in Online Appendix B). Next, we run the pooled specification (2.2) to
obtain post-LASSO estimates η̂

ŜT V A
of the pooled policies as well as η̂hyb

ŜT V A,κ̂⋆
, the winner’s

curse adjusted estimate of the best policy.

5.1.2. Results. The results are presented in Figure 5. Panel A presents the post-LASSO
estimates where the outcome variable is the number of measles vaccines per month in the
village. Panel B presents the post-LASSO estimates where the outcome variable is the
number of measles vaccines per dollar spent. In each, a relatively small subset of policies

28Rohe (2014), a supplementary note to Jia and Rohe (2015)), deduces a algorithmic equivalence between a
backwards elimination procedure based on using Type I error thresholds and LASSO on PufferN transformed
variables. In particular, the variables deselected by a LASSO penalty level λ are exactly those variables with
classical OLS p-value above the Type I error threshold. We take λ = 0.48 and λ = 0.0014 for the number of
immunizations and immunizations per dollar outcomes, respectively. Both of these choices map to the same
Type I error value (p = 5×10−13) used in the backwards elimination implementation of LASSO, a threshold
selected to essentially eliminate false positives. Appendix D elaborates on this choice. The algorithmic
equivalence thus permits a common interpretation of the two models on the two outcomes as admitting the
same Type I error. Its other advantage is that we can implement Rohe’s recommendation of sequentially
deselecting variables until this threshold rather than eliminating them in a single step, because, as Rohe
notes, this better handles variable correlation.
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is selected as part of ŜT V A out of the universe of 75 granular policies (16% of the possible
options in Panel A and 35% in Panel B).

In Figure 5, Panel A, two of the four selected pooled policies are estimated to do significantly
better than control: information hubs seeding with sloped incentives (of both low and high
intensities) and SMS reminders (of both 33% and 66% saturation) are estimated to increase
the number of immunizations by 55% relative to control (p = 0.001), while trusted seeds
with high-sloped incentives and SMS reminders (of both saturation levels) are estimated to
increase immunizations by 44% relative to control (p = 0.009).

These two effective policies increase the number of immunizations, relative to the status
quo, at the cost of a greater cost for each immunization (compared to standard policy).
These policies induce 36.0 immunizations per village per month per $1,000 allocation (as
compared with 43.6 immunizations per village per month in control). The reason is that
that the gains from having incentives in terms of immunization rates is smaller than the
increase in costs (e.g., the incentives must be paid to all the infra-marginal parents).

Two things are worth noting to qualify those results, however. First, in Chernozhukov
et al. (2018), we show that in the places where the full package treatment is predicted to
be the most effective (which tends to be the places with low immunization), the number of
immunizations per dollar spent is not statistically different in treatment and control villages.
Second, immunization is so cost-effective that this relatively small increase in the cost of
immunization may still mean a much more cost-effective use of funds than the next best use
of dollars on policies to fight childhood disease (Ozawa et al., 2012).

Nevertheless, a government may be interested in the most cost-effective policy, if they have
a given budget for immunization. We turn to policy cost effectiveness in Figure 5, Panel
B. The most cost-effective policy (and the only policy that reduces per immunization cost)
compared to control is the combination of information hub seeding (trusted or not) with
SMS reminders (at both 33% or 66% saturation) and no incentives, which leads to a 9.1%
increase in vaccinations per dollar (p = 0.000).

5.2. Estimating the Impact of the Best policy. To estimate the impact of the best
policy, we first select the best policy from ŜT V A based on the post-LASSO estimate. Then,
we attenuate it using the hybrid estimator with α = 0.05 and β = α

10 = 0.005, which this
is the value used by Andrews et al. (2021) in their simulations. The hybrid confidence
interval has the following interpretation: conditional on policy effects falling within a 99.5%
simultaneous confidence interval, the hybrid confidence interval around the best policy has
at least 95% coverage. It also has at least 95% coverage unconditionally.29

29Per Proposition 6 of Andrews et al. (2021), it has unconditionial coverage between 1 − α = 95% and
1−α
1−β = 95.58%.
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Table 1 presents the results. In column 1, the outcome variable is the number of measles
vaccines given every month in a given village. We find that for the best policy in the
sample (information hub seeds with sloped incentives at any level and SMS reminders at
any saturation) the hybrid estimated best policy effect relative to control is 3.26 with a
95% hybrid confidence interval of [0.032,6.25]. This is lower than the original post-LASSO
estimated effect of 4.02. The attenuation is owing to a second best policy (trusted seeds
with high sloped incentives with SMS reminders at any saturation), chasing the best policy
estimate somewhat closely.30 Nevertheless, even accounting for winner’s curse through the
attenuated estimates and the adjusted confidence intervals, the hybrid estimates still reject
the null. Thus, the conclusion is that accounting for winner’s curse, this policy increases
immunizations by 44% relative to control.

While policymakers may chose this policy if they are willing to bear a higher cost to
increase immunization, there may be settings where cost effectiveness is an important consideration.
In column 2, the outcome variable is the number of vaccinations per dollar. Accounting
for winner’s curse through hybrid estimation, for the best policy of information hubs (all
variants) and SMS reminders (any saturation level), the hybrid estimated best policy effect
relative to control is 0.004 with a 95% hybrid confidence interval of [0.003,0.004]. Notably,
this appears almost unchanged from the naive post-LASSO. This is because no other pooled
policy with positive effect is “chasing” the best policy in the sample; the second-best policy
is the control (status quo), which is sufficiently separated from the best policy so as to have
an insignificant adjustment for winner’s curse. Thus, adjusting for winner’s curse, this policy
increases the immunizations per dollar by 9.1% relative to control.

One concern with these estimates may be that they are sensitive to the implied LASSO
penalty λ chosen. To check the robustness of our results, we consider alternative values of
λ. However, we also need a criteria for evaluating results under various λ since a marginal
effects support will never be robust for the whole range of λ. Online Appendix D spells
out this criteria, which amounts to formulating a set of “admissible” λ. In a nutshell, the
criterion is to avoid including in Ŝα first and second best policies that are very likely to be
false positives. Including a false positive as the first best a serious error in the context of
policy advising, but it also matters for the second best, since including these in the support
may overly attenuate the best policy estimate for winner’s curse. In our case, we find that
for both immunizations and immunizations per dollar, the winner’s curse adjusted estimates
are robust for their respective sets of admissible λ. To exemplify this robustness, we can
take the union of confidence intervals within their admissible sets. This is [0.32,6.25] for
immunizations and [0.001,0.006] for immunizations per dollar. Neither is much wider than
the single confidence interval for the choice of λ we highlight.
30The increased attenuation from a more closely competing second-best policy emerges from the formulas
for conditional inference given in Section 3 of Andrews et al. (2021).
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Though admissible λ are on a different scale for the two outcomes, there is a sense in which
the admissible set is larger for immunizations per dollar. This suggests a different kind of
robustness concern which is more about the relative fragility of the TVA estimator for each
of the outcomes. We can speak to this fragility using a bootstrapping analysis described in
detail in our Online Appendix F. Intuitively, it captures stability of best policy estimation
in terms of observation leverage, where conclusions driven by outliers will fare worse. In
this analysis, the best policy for cost-effectiveness holds for 96% with highly concentrated
estimates around the main one in actual data. Meanwhile, the best policy for immunization
holds for 77% of bootstrapped samples with estimates more widely dispersed. This speaks
to the relative stability of the best policy for cost effectiveness over that for immunizations.

6. Conclusion

Despite immunization being one of the most effective and cost-effective methods to prevent
disease, disability, and mortality, millions of children each year go unvaccinated. The
COVID-19 epidemic has made the situation worse: vaccine coverage has dipped to levels
not seen since the 1990s (Bill and Melinda Gates, 2020). Swift policy action is critical
to ensure that this dip is temporary and children who missed immunizations during the
pandemic get covered soon.

In rural India, there was a priori reason to believe that nudges may work. After all, many
children get their first vaccines but caregivers rarely follow through. This is consistent with
the vast majority of caregivers reporting that vaccines are helpful. Yet, it was a priori unclear
as to which nudge, let alone which policy bundle out of the 75 candidates, would be effective.

Respecting this genuine uncertainty was critical. If we had simply done parallel treatments
of incentives, reminders, and ambassadors, we might have found no effects. Our key finding is
that combined interventions work better than each in isolation. Though there is temptation
of paring down the number of treatments a priori for power, there is a danger in not doing
this in a data-driven way. The suggestion of avoiding all interactions in this setting (made
in Muralidharan et al. (2019)) would have led to the conclusion that nothing is effective.

From the point of view of public health policy the interaction effects identified by TVA
tells us that it is valuable to add network-based insights (information hubs), which are not
in a typical policymaker’s toolkit, to catalyze the effects of conventional instruments. From
a basic research perspective, it also suggests that the information hubs, i.e. the person best
placed in a village to circulate information, may be more effective when they have something
concrete to talk about, such as incentives or something to explain such as SMSs. Such
questions merit future research.

The method suggested here is applicable to many domains where policymakers have
several arms with multiple potential doses, do not have the time or capacity to adaptively
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experiment, and have genuine uncertainty about which policy bundles should be effective.
Rather than guessing, we suggest that policymakers consider a data-driven approach of
treatment variant aggregation. The proposed method relies on strong assumptions that
rule out some of the cases where model-selection leads to invalid inferences. Provided these
assumptions are palatable, our findings show that TVA prunes and pools effectively and, this
pays dividends when the policymaker wishes to adjust for the winner’s curse without falling
into the trap of over-conservatism. The algorithm can be easily pre-specified and does not
require the researcher to take a stance on the possible effects of myriad interactions which
are likely difficult to predict in advance.

References

Akbarpour, M., S. Malladi, and A. Saberi (2017): “Diffusion, Seeding, and the Value
of Network Information,” Available at SSRN: https://ssrn.com/abstract=3062830. 24

Alatas, V., A. G. Chandrasekhar, M. Mobius, B. A. Olken, and C. Paladines
(2019): “When Celebrities Speak: A Nationwide Twitter Experiment Promoting
Vaccination In Indonesia,” Tech. rep., National Bureau of Economic Research. 7

Andrews, I., T. Kitagawa, and A. McCloskey (2021): “Inference on winners,” Tech.
rep. 1, 1, 15, 2.5, 2.5, 3.3.1, 22, 3.3.2, 5.2, 29, 30, ??, D, E.2.2, E.2, F, G.2

Angrist, J. D. and J.-S. Pischke (2009): Mostly harmless econometrics: An empiricist’s
companion, Princeton university press. 38

Aral, S. and D. Walker (2012): “Creating social contagion through viral product design:
A randomized trial of peer influence in networks,” Management Science. 4.2.3

Banerjee, A., E. Breza, A. G. Chandrasekhar, and B. Golub (2018): “When Less
is More: Experimental Evidence on Information Delivery During India’s Demonetization,”
Tech. rep., National Bureau of Economic Research. 4.2.2

Banerjee, A., A. Chandrasekhar, E. Duflo, S. Dalpath, J. Floretta,
M. Jackson, H. Kannan, A. Schrimpf, and M. Shrestha (2021): “Evaluating
the impact of interventions to improve full immunisation rates in Haryana, India,” . 4.1

Banerjee, A., A. Chandrasekhar, E. Duflo, and M. O. Jackson (2013): “Diffusion
of Microfinance,” Science, 341, DOI: 10.1126/science.1236498, July 26 2013. 24, 4.2.3

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2019): “Using
Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled
Trials,” The Review of Economic Studies. 7, 4.2.3, 4.5

Banerjee, A. V., E. Duflo, R. Glennerster, and D. Kothari (2010): “Improving
immunisation coverage in rural India: clustered randomised controlled evaluation of
immunisation campaigns with and without incentives,” Bmj, 340, c2220. 4, 4.2.1



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 35

Bassani, D. G., P. Arora, K. Wazny, M. F. Gaffey, L. Lenters, and Z. A.
Bhutta (2013): “Financial incentives and coverage of child health interventions: a
systematic review and meta-analysis,” BMC Public Health, 13, S30. 4, 4.2.1

Beaman, L., A. BenYishay, J. Magruder, and A. M. Mobarak (2018): “Can
network theory-based targeting increase technology adoption?” Tech. rep., National
Bureau of Economic Research. 4.2.3

Berk, R., L. Brown, A. Buja, K. Zhang, and L. Zhao (2013): “Valid post-selection
inference,” The Annals of Statistics, 802–837. 2.4

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009): “Simultaneous analysis of Lasso
and Dantzig selector,” The Annals of statistics, 37, 1705–1732. 2.2

Bill and F. Melinda Gates (2020): “COVID-19: A Global Perspective: 2020
Goalkeepers Report,” . 6

Bloch, Francis and, M. O. and P. Tebaldi (2016): “Centrality Measures in
Networks,” http://ssrn.com/abstract=2749124. 24

Chandir, S., D. A. Siddiqi, S. Abdullah, E. Duflo, A. J. Khan, and
R. Glennerster (2022): “Small mobile conditional cash transfers (mCCTs) of different
amounts, schedules and design to improve routine childhood immunization coverage and
timeliness of children aged 0-23 months in Pakistan: An open label multi-arm randomized
controlled trial,” EClinicalMedicine, 50. 4.2.1, 4.5

Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernandez-Val (2018):
“Generic machine learning inference on heterogenous treatment effects in randomized
experiments,” Tech. rep., National Bureau of Economic Research. 5.1.2

Chernozhukov, V., C. Hansen, and M. Spindler (2015): “Post-selection and post-
regularization inference in linear models with many controls and instruments,” American
Economic Review, 105, 486–90. E.3

DLHS (2013): “District Level Household and Facility Survey-4,” . 4.1
Domek, G. J., I. L. Contreras-Roldan, S. T. O’Leary, S. Bull, A. Furniss,

A. Kempe, and E. J. Asturias (2016): “SMS text message reminders to improve
infant vaccination coverage in Guatemala: A pilot randomized controlled trial,” Vaccine,
34, 2437–2443. 5

Gibson, D. G., B. Ochieng, E. W. Kagucia, J. Were, K. Hayford, L. H.
Moulton, O. S. Levine, F. Odhiambo, K. L. O’Brien, and D. R. Feikin (2017):
“Mobile phone-delivered reminders and incentives to improve childhood immunisation
coverage and timeliness in Kenya (M-SIMU): a cluster randomised controlled trial,” The
Lancet Global Health, 5, e428–e438. 4, 4.2.1



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 36

Hadad, V., D. A. Hirshberg, R. Zhan, S. Wager, and S. Athey (2021): “Confidence
intervals for policy evaluation in adaptive experiments,” Proceedings of the National Acad-
emy of Sciences, 118, e2014602118. 1

Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter,
J. S. Currier, J. J. Eron Jr, J. E. Feinberg, H. H. Balfour Jr, L. R. Deyton,
et al. (1997): “A controlled trial of two nucleoside analogues plus indinavir in persons
with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic
millimeter or less,” New England Journal of Medicine, 337, 725–733. 1

He, X. and Q.-M. Shao (2000): “On parameters of increasing dimensions,” Journal of
multivariate analysis, 73, 120–135. 2.4, 2.4, A

Hinz, O., B. Skiera, C. Barrot, and J. U. Becker (2011): “Seeding Strategies for
Viral Marketing: An Empirical Comparison,” Journal of Marketing, 75:6, 55–71. 24

Iyengar, R., C. V. den Bulte, and T. W. Valente (2010): “Opinion Leadership and
Social Contagion in New Product Diffusion,” Marketing Science, 30:2, 195–212. 24

Jackson, M. O. (2008): “Average Distance, Diameter, and Clustering in Social Networks
with Homophily,” in the Proceedings of the Workshop in Internet and Network Econom-
ics (WINE 2008), Lecture Notes in Computer Science, also: arXiv:0810.2603v1, ed. by
C. Papadimitriou and S. Zhang, Springer-Verlag, Berlin Heidelberg. 24

——— (2017): “A Typology of Social Capital and Associated Network Measures,” SSRN
http://ssrn.com/abstract=3073496. 24

Jackson, M. O. and L. Yariv (2011): “Diffusion, strategic interaction, and social
structure,” Handbook of Social Economics, San Diego: North Holland, edited by Benhabib,
J. and Bisin, A. and Jackson, M.O. 24

Javanmard, A. and A. Montanari (2013): “Model selection for high-dimensional
regression under the generalized irrepresentability condition,” in Advances in neural
information processing systems, 3012–3020. 1, 2.4, A

——— (2014): “Confidence intervals and hypothesis testing for high-dimensional regression,”
The Journal of Machine Learning Research, 15, 2869–2909. 3.3.3, E.2.3, E.4

——— (2018): “Debiasing the lasso: Optimal sample size for gaussian designs,” The Annals
of Statistics, 46, 2593–2622. 3.3.3, E.2.3

Jia, J. and K. Rohe (2015): “Preconditioning the Lasso for sign consistency,” Electronic
Journal of Statistics, 9, 1150–1172. 1, 2.2, 2.2, 10, 28, A, 37
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Figure 1. Hasse diagram for M = 2, R = 4 for the treatment profile where
both arms are active. A line upwards from treatment combinations [r1, r2]
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Figure 2. This figure shows how zeros in the marginals induce admissible
”concatenations” in the Hasse diagram of policies. Panels A, B, C show
examples of zeros in the marginal space and panels D, E, F show the
corresponding policy-concatenations in the η-space. On panel A, α[2,1] =
α[3,1] = 0. Since α[2,1] = β[2,1] − β[1,1] and α[3,1] = β[3,1] − β[2,1], [1, 1], [2, 1], [3, 1]
are concatenated on panel D. On panel B, α[2,1] ̸= 0 = β[2,1] − β[1,1],
α[1,2] = 0 = β[1,2] − β[1,1], and α[2,2] = 0 =

(
β[2,2] − β[2,1]

)
−
(
β[1,2] − β[1,1]

)
.

The implied poolings are shown on panel E where policies {[1, 1], [1, 2]} and
{[2, 1], [2, 2]} are concatenated. In panel C note that the only change relative
to panel B is that here α[2,1] = 0, but the implied concatenation on panel F
yields β[1,1] = β[1,2] = β[2,1] = β[2,2].
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Figure 3. A plot comparing the performance of the TVA estimator to
applying OLS on the unique policy specification (2.1) for a range of measures.
On panel A, we first expose the normality of TVA estimates (r is correct
support selection rate). Panel B then uses the best policy inclusion measures
defined in subsection 3.2 and points are slightly jittered for better readability.
For OLS, this measure is set to 1 whenever the highest treatment effect policy
is part of the true best pool (some best) or equal to the minimum dosage best
policy (min best). Panel C compares the amount of shrinkage imposed by
the winner’s curse adjustment as percentage of the initial coefficient. Panel
D compares the MSE of the best policy estimation, between the TVA and
the OLS estimator of the unique policy specification (2.1) before and after
adjusting for the winner’s curse. In all panels, there are 20 simulations per
configuration and 5 configurations per n.
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Figure 4. Effects on the number of measles vaccinations relative to control
(7.32) by reminders, incentives, and seeding policies, restricted to the villages
were the ambassador intervention was administered. The specification is
weighted by village population, controls for district-time fixed effects, and
clusters standard errors at the sub-center level.



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 44

Figure 5. TVA estimates of combinations of reminders, incentives, and
seeding policies on the number of measles vaccines (Panel A) and the number
of measles vaccines per $ (Panel B) relative to control (7.32 and 0.0436
respectively). The specifications are weighted by village population and
include controls for district-time fixed effects. Standard errors are clustered at
the sub-center level. 95% confidence intervals displayed.
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Tables

Table 1. Best Policies

(1) (2)
# Measles Shots # Measles Shots per $1

WC Adjusted Treatment Effect 3.26 0.004
Confidence Interval (95%) [0.32,6.25] [0.003, 0.005]
Control Mean 7.32 0.0436
Observations 204 814
Optimal Policy (Information Hubs, SMS, Slope) (Information Hubs POOLED, SMS)
Notes: Estimation using Andrews et al. (2021); hybrid estimation with α = 0.05, β = 0.005. The
specifications are weighted by village population and account for district-time fixed effects as well as variance
clustered at the sub-center level.
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Appendix A. Proofs

Proof of Proposition 2.1. According to Theorem 1 of Jia and Rohe (2015), if minj∈Sα |αj| ≥
2λn, then α̃ =s α with probability greater than31

f(n) := 1− 2K exp
(
− nλ2

nξ
2
min

2σ2

)
,

where ξmin = ξmin( X√
n
) is the minimum singular value of the

√
n-normalized design matrix.

By Assumption 3, there is a uniform lower bound c > 0 on the magnitude of the non-zero
{α}. Since by Assumption 5, λn → 0, for sufficiently high n minj∈Sα |αj| ≥ 2λn. Theorem 1
applies and sign(α̂) = sign(α) with probability greater than f(n).

It will be convenient to re-express f(n) as follows:

f(n) = 1− 2 exp
(

log(K)− nλ2
nξ

2
min

2σ2

)
.

And applying Lemma A.1 and Assumption 2, for sufficiently high n:

f(n) ≥ 1− 2 exp
(

log(K)− nλ2
n

2σ2K2

)
≥ 1− 2 exp

(
γ log(n)− n1−2γλ2

n

2σ2

)
.

By Assumption 5, λ2
nn

1−2γ = ω(n1−2(ν+γ)). Since 0 < ν < 1
2 =⇒ 1 − 2γ > 1 −

(2(ν + γ)) > 0, and logarithm growth is dominated by polynomial growth, it follows that
−
(
γ log(n)− n1−2γλ2

n

2σ2

)
grows at polynomial rate ω(n1−2(ν+γ)) and therefore limn→∞ f(n) ≥ 1

at exponential rate. Since also f(n) ≤ 1, it follows that f(n)→ 1 at exponential rates.

Lemma A.1. For the marginal effects design matrix X, for R ≥ 3, wpa1 the lowest singular

value of
√
n normalized design matrix, i.e., ξmin( X√

n
), has the value ξmin( X√

n
) =

(
4R sin2

(
R− 3

2
R− 1

2

π
2

))− M
2

.
Thus, with probability approaching 1, ξmin( X√

n
) > ( 1

K
).32

Proof of Lemma A.1. It will be useful to index the design matrix X by R and M , i.e.,
X = XR,M . Let CR,M = limn→∞

1
n
X′

R,MXR,M . Then limn→∞ ξ2
min(XR,M√

n
) = λmin(CR,M), i.e.,

the lowest eigenvalue of CR,M . We will characterize this eigenvalue.

The combinatorics of the limiting frequencies of “1”s in marginal effects variables imply that
CR,M is a block diagonal matrix with structure CR,M = K−1diag(BR,M ,BR,M−1, . . . ,BR,1)
where BR,M−1 implies this block is found in CR,M−1 (pertaining to an RCT with one less

31The “=s” notation stands for equality in sign following Definition 1 in Zhao and Yu (2006).
32This is a conservative bound; the optimal uniform lower bound is

( 1
K ( 1

4M )
) 1

2 .
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cross-treatment arm), etc. More than one block of BR,M−1 , BR,M−2, ... BR,1 is found in
CR,M, but only BR,M determines the minimum eigenvalue.

The combinatorics of variable assignments also implies that
(1) BR,M is an (R−1)M×(R−1)M matrix with recursive structure BR,M = BR,1⊗BR,M−1,

where ⊗ is the Kronecker product.33

(2) BR,1 is an (R− 1)× (R− 1) matrix with recursive structure

BR,1 =


R− 1 R− 2 · · · 1
R− 2

... BR−1,1

1

 and B2,1 = [1].

Sublemma 1. λmin(BR,1) =
(

4 sin2
(

R− 3
2

R− 1
2

π
2

))−1

Proof. The key insight34 is that BR,1
−1 is the (R− 1)× (R− 1) tridiagonal matrix:

BR,1
−1 =



1 −1
−1 2 −1

−1 . . . . . .
. . . . . . −1
−1 2


which has known eigenvalues µj = 4 sin2

(
j− 1

2
R− 1

2

π
2

)
for j = 1, 2, ..., R − 1. Thus, given that

the inverse of a matrix’s eigenvalues are the inverse matrix’s eigenvalues, λmin(BR,1) =(
4 sin2

(
R− 3

2
R− 1

2

π
2

))−1
.

(Resuming the proof of Lemma A.1) Per the multiplicative property of the eigenvalues of a
Kronecker product, together with the fact that all matrices in question are positive definite,
it immediately follows that λmin(BR,M) = λmin(BR,1)λmin(BR,M−1), which in turn implies
λmin(BR,M) = λmin(BR,1)M . Since by Sublemma 1, λmin(BR,1) < 1, BR,M is the block
determining the rate with the smallest eigenvalue, and therefore, given that the eigenvalues
of a block diagonal matrix are the eigenvalues of the blocks:

λmin(CR,M) = 1
K
λmin(BR,M) = 1

K
(λmin(BR,1))M =

(
4R sin2

(R− 3
2

R− 1
2

π

2
))−M

where the last equality uses Sublemma 1. The Lemma follows.

33Thanks to Nargiz Kalantarova for noticing this Kronecker product and its consequent implication for
λmin(BR,M ).
34The argument is provided on Mathematics Stackexchange (user1551 (https://math.stackexchange.com/
users/1551/user1551), 2017).

https://math.stackexchange.com/users/1551/user1551
https://math.stackexchange.com/users/1551/user1551
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Proof of Proposition 2.2. The proof is found in Javanmard and Montanari (2013), proof
of Theorem 2.7, with minor modifications, which we reproduce for completeness. Label
the events E :=

{
ŜT V A = ST V A

}
(that the treatment variants were aggregated correctly).

Define the pseudo-true value η0
S := argminη E

[
∥y − ZSη∥2

2

]
, noting that η0

ST V A
satisfies this

for S = ST V A. Finally, let F :=
{∥∥∥η̂

ŜT V A
− η0

ŜT V A

∥∥∥
∞
> ϵ

}
, so it is the event that the

estimator exceeds the pseudo-true value on the estimated support by ϵ.
Then, we can write

P (F) = P (F ∩ E) + P (F ∩ Ec) ≤ P (F ∩ E) + P (Ec) .

By the proof of Proposition 2.1, we have

P (Ec) ≤ 2K exp
(
−n (λ/K)2

2σ2

)
= 2 exp

(
γ log n− n1−2γλ

2σ2

)

Turning to P (F ∩ E), on the event E ,

η̂
ŜT V A

− η0
ŜT V A

=
(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ,

since ŜT V A = ST V A. Therefore, for every j ∈ {1, . . . , K}, η̂ST V A,j − η0
ST V A,j is normally

distributed with variance order bounded above by σ2

n·Cmin
where Cmin := σmin

(
n−1Z ′

ST V A
ZST V A

)
is the minimum singular value of the design matrix. But Cmin ≥ 1√

K
by definition since each

unit is assigned to a disjoint pooled policy, and each policy pools one or more variants. So

P (F ∩ E) = P
(∥∥∥η̂

ŜT V A
− η0

ŜT V A

∥∥∥
∞
> ϵ ∩ E

)
≤ P

(
sup

j

∣∣∣η̂ST V A,j − η0
ST V A,j

∣∣∣ > ϵ

)
≤ 2e− n·ϵ2·K−1/2

2σ2 ,

using a Gaussian tail bound and a union bound for uniform control over j ∈ {1, . . . , |ST V A|}.
Putting the pieces together we have

P (F) ≤ 2 exp
(
−n · ϵ

2 ·K−1/2

2σ2

)
+ 2 exp

(
γ log n− n1−2γλ2

2σ2

)

This establishes that P(F) → 0 for every ϵ, i.e., the consistency of the estimator to the
pseudo-true values. With probability 1− 2 exp

(
γ log n− n1−2γλ

2σ2

)
→ 1, the event E is active

and the pseudo-true value will be the true value. In this case consider ϵ =
√

log n
n1−γ/2 . Then

P (F ∩ E) = 2e− nϵ2Cmin
2σ2 ≤ 2e− log n

n1−γ/2 · nK−1/2
2σ2 ≤ 2e− log n

2σ2 = 2
n1/2σ2 → 0,

i.e.,
∥∥∥η̂

ŜT V A
− η0

ST V A

∥∥∥
∞
<
√

log n
n1−γ/2 with high probability, completing the proof.

Proof of Proposition 2.3. As in the proof of Proposition 2.2, let E :=
{
ŜT V A = ST V A

}
. Let

c ∈ R|ŜT V A| whose length depends on the estimated support (and is therefore random),
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though we suppress this dependence. We can decompose35 √nc′
(
η̂

ŜT V A
− η0

ŜT V A

)
, a real-

valued random variable, as
√
nc′

(
η̂

ŜT V A
− η0

ŜT V A

)
= 1 {E} ·

√
nc′

(
Z ′

ST V A
ZST V A

)−1
Z ′

ST V A
ϵ+ 1 {Ec} ·

√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ

=
√
nc′

(
Z ′

ST V A
ZST V A

)−1
Z ′

ST V A
ϵ− 1 {Ec} ·

√
nc′

(
Z ′

ST V A
ZST V A

)−1
Z ′

ST V A
ϵ

+ 1 {Ec} ·
√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ.

It is helpful to note that c is any vector of the same length as the size of the estimated
support. So conditional on the event of the estimated support being the true support, for
instance, it has the true length. Conditional on any realization of an alternative length
support, one considers a conformal vector corresponding to the estimated support size.

The proof strategy is to see that the CLT ensures the asymptotic normality of the first
term in this sum in the usual way, following He and Shao (2000) since we have a growing
number of parameters, while the remaining terms will asymptotically vanish in probability.

Let us take the first term, so we are looking at the case on ST V A. Here we show asymptotic
normality. In order to show this, we need to show that every linear combination of the vector
of regression coefficients (of which there are a growing number) is asymptotically normally
distributed when properly normalized. We show the sufficient conditions for Corollary 2.1
in He and Shao (2000). First, by Assumption 2, note that K2 log(K) = O (n2γ log(n)) =
o(n), using that 2γ < 1 and that log(n) grows more slowly than any polynomial in n. K

thereby satisfies the hypothesized growth rate condition in Corollary 2.1 for smooth scores,
which is our case since we study linear regression. Second, we check (D1)-(D3) after which
the corollary applies. (D1) follows since n−1Z ′

ST V A
ZST V A

= I by definition since every
observation is assigned to one unique treatment dummy. (D2) follows since in the case of
linear regression, the score and its derivative are bounded. As noted in He and Shao (2000),
a sufficient condition for (D3) is that the regression vector, here ZST V A,i for observation i is
such that E |c′ZST V A,i|4 for any c in the unit sphere of length |ST V A|. But this is mechanically
true since ∥ZST V A,i∥ = 1 since it is a saturated vector of treatment bundle assignments and
therefore has a single 1 corresponding to the entry for the treatment assigned.

Therefore, Corollary 2.1 of He and Shao (2000) applies. This means that
√
nc′

(
η̂ST V A

− η0
ST V A

)
/σ(c)⇝ N (0, 1) .

for any c ∈ R|ST V A|, where σ2(c) := σ2 ∥c∥2.
The second term can be handled by showing for any c ∈ R|ST V A|, we have 1 {Ec} ·
√
nc′

(
Z ′

ST V A
ZST V A

)−1
Z ′

ST V A
ϵ = op(1). We already showed that

√
nc′

(
Z ′

ST V A
ZST V A

)−1
Z ′

ST V A
ϵ

is asymptotically normal and so Op(1). Since 1 {Ec} is op(1), the whole term is op(1).

35We thank Adel Javanmard for a helpful discussion.
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Regarding the third one: 1 {Ec} ·
√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ. So here we study 1 {Ec} ·

√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ where c ∈ R|ŜT V A and show that it is op(1). The point is

that
(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ, which potentially inherits omitted variable bias by including

incorrect regressors, is nevertheless uniformly bounded in n and K. In fact, we can bound the
∥·∥∞ norm which implies bounding the size of the inner product with any aforementioned c.
In detail, first note that

∥∥∥∥(Z ′
ŜT V A

Z
ŜT V A

)−1
Z ′

ŜT V A
ϵ

∥∥∥∥
∞
≤
∥∥∥Z ′

ŜT V A
ϵ
∥∥∥

∞
because

(
Z ′

ŜT V A
Z

ŜT V A

)−1

is a positive definite block diagonal matrix with every entry < 1. Secondly
∥∥∥Z ′

ŜT V A
ϵ
∥∥∥

∞
< Knϵ

since Z
ŜT V A

is a binary matrix. Since ϵ is Op(1),
∥∥∥∥(Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ

∥∥∥∥
∞

is uniformly

Op(Kn) over all misspecifications ŜT V A.
Thus, 1 {Ec}·

√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ is uniformly bounded in probability by P(Ec)Op(Kn 3

2 ).
But since P (Ec) ≤ 2K exp

(
−n(λ/K)2

2σ2

)
= 2 exp

(
log(K)− n(λ/K)2

2σ2

)
, recalling the proof of

Proposition 2.2,

Op(Kn 3
2 )P(Ec) = Op

(
e

(
3
2 log(n)+2 log(K)− n(λ/K)2

2σ2

))
= Op

(
e

(
3
2 log(n)+2γ log(n)− n1−2γ λ2

2σ2

))
= op(1).

So 1 {Ec} ·
√
nc′

(
Z ′

ŜT V A
Z

ŜT V A

)−1
Z ′

ŜT V A
ϵ vanishes in probability and altogether,

√
nc′

(
η̂

ŜT V A
− η0

ŜT V A

)
/σ2(c)⇝ N (0, 1) + op(1) + op(1)⇝ N (0, 1) ,

which completes the proof.
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ONLINE APPENDIX : NOT FOR PUBLICATION

Selecting the Most Effective Nudge: Evidence from a Large-Scale
Experiment on Immunization

Abhijit Banerjee, Arun G. Chandrasekhar, Suresh Dalpath, Esther Duflo, John Floretta,
Matthew O. Jackson, Harini Kannan, Francine Loza, Anirudh Sankar, Anna Schrimpf, and

Maheshwor Shrestha
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Appendix B. Pooling Procedure and Properties

Here we show how to construct a set of pooled policies ŜT V A from an estimated support
of marginals Ŝα. In case the marginals are correctly estimated Ŝα = Sα, we will show that
the implied pooling ŜT V A = ST V A has the properties of Λ-admissibility and maximality.

Given Ŝα let [Ŝα] denote its partition into sets of support vectors with the same treatment
profile. Each S ∈ [Ŝα] is thus a set of treatment combinations {k1, ...kn}. For each ki ∈
{k1, ...kn}, define a set comprised of policies sharing ki’s profile that weakly dominate it:

(B.1) Aki
= {k ∈ K|P (k) = P (ki) and k ≥ ki}.

Now consider a simple operator that selects, for every setB, either the set or its complement.
Let us write this as Ba, where a ∈ {1, c}. When a = 1, the operator selects B, while when
a = c the operator selects Bc. Following this, the pooled policies ŜT V A is defined as the
collection of sets:

(B.2) A = Aa1
k1 ∩ ... ∩ A

an
kn

which are nonempty, and where furthermore at least one ai = 1. Algorithm 2 describes
this construction of ŜT V A procedurally.

We will now lend intuition for this construction, which will clarify its properties. For this
discussion, assume the marginal support is correctly estimated, i.e. Ŝα = Sα. Considering
the relationship between marginal effects α and policy effects β given by (2.3), Ak is the set
of policies whose effects are partly determined or “influenced” by αk.

It is useful to depict this on the Hasse with a simple example. Take M = 2, R = 4, and
the treatment profile where both arms are on. The Hasse diagram of the unique policies
within this treatment profile is shown on Figure C.1.

Consider for example the set A[2,1], stemming from α[2,1], depicted as all those policies
within the blue contour on this figure. These are all the policies that are influenced by
α[2,1]. Motivated by this visual depiction of influence, let us say that in general Ak is the
“sphere of influence” of αk. A policy’s effect is entirely determined by the various “spheres”
acting on it. We can restrict attention to those spheres stemming from αk ̸= 0 because the
other spheres are inactive (spheres of “non-influence”). Each set A constructed per (B.2),
describes a set of policies subject to a unique set of active spheres. When ai = 1, it means
that the sphere Aki

stemming from αki
is active; when ai = c the sphere is inactive. Thus

in Figure C.1, A1 := A[1,2] ∩ A[2,1] are those policies influenced by both α[1,2] and α[2,1].
A2 := A[1,2] ∩ Ac

[2,1] are those policies influenced by only α[1,2] (and not by α[2,1]); vice-versa
for A3 := Ac

[1,2] ∩ A[2,1]. For any policy k ∈ A, the α ↔ β parameter relationship (2.3)
immediately implies βk = ∑

i|ai=1 αki
.
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It is immediate by construction that this pooling is both admissible and maximal. Exactly
those policies influenced by the same marginals are pooled, and nothing else is. Of course
for a given realization of marginals α, one could have policies influenced k, k′ influenced
by different marginals (spheres of influence) which happen to have the same policy effects
βk = β′

k. But we don’t want to pool such policies because jittering the nonzero α (keeping
the support Sα fixed) would mean βk ̸= β′

k almost surely. Since we want to consider pooling
using only Sα irrespective of the exact value of α, exactly those policies influenced by the
same spheres should be pooled.

Observation 1. ST V A is the the coarsest pooling uniformly over α conditional on Sα

[1, 1]

[2, 1][1, 2]

[2, 2][1, 3] [3, 1]

[3, 2][2, 3]

[3, 3]
A[2,1] A[1,2]

A[1,2] ∩ A[2,1]

Ac
[1,2] ∩ A[2,1]A[1,2] ∩ Ac

[2,1]

Figure C.1. Hasse Diagram with A[2,1] and A[1,2] with complements and
intersections.
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Algorithm 2: Pooling Procedure
input : Estimated support Ŝα from the marginal specification (2.4)
output: Estimated pooled policies ŜT V A for pooled specification (2.2)
Partition Ŝα into [Ŝα] per the treatment profile mapping P (.) ;
Initialize ŜT V A ←− ∅ ;
for S ∈ [Ŝα] do

discover S = {k1, ..., kn};
generate {Ak1 , ..., Akn};
for each (a1, ..., an)|ai ∈ {1, c} do

generate A = Aa1
k1 ∩ ... ∩ A

an
kn

;
if A ≠ ∅ and A ≠ Ac

k1 ∩ ... ∩ A
c
kn

then
ŜT V A ←− ŜT V A ∪ A;

end
end

end
return ŜT V A
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Appendix C. Irrepresentability Failures

C.1. TVA without Puffering, (2.4), can fail irrepresentability. Proof by construction.
Irrepresentability says that no covariate is explained too much by others, in terms of the total
magnitudes of regression coefficients. Formally, for any regression of any covariate on set
of other covariates, the L1 norm of the coefficients (excluding intercept) is not to exceed 1.
Irrepresentability fails, therefore, when there is any covariate k∗ and K ′ ⊂ K, k∗ /∈ K ′ such
that in an OLS regression:

Xn
k∗ = γ̂0 +

∑
k∈K′

γ̂kX
n
k .∑

k∈K′ |γ̂k| > 1 for all n.36 In that case Xk∗ is considered “representable” by XK′ . The
irrepresentability criterion (Zhao and Yu, 2006) says that this is a problem when Xk∗ is not
in the support XSα of (2.4) but all XK′ are, as with some nonvanishing probability LASSO
will select Xk∗ along with XK′ on all points of the regularization path that include XK′ .37 We
will show that when M ≥ 2, R ≥ 3 (i.e. there are at least 2 arms and 2 nonzero dosages per
arm, a case which our particular immunization cross randomized experiment nests), there
can be an irrepresentability failure for some Sα.

We provide a candidate k∗ and K ′ for M = 2, R = 3, that can also be embedded in any
higher number of arms or intensities.

36See Zhao and Yu (2006), p. 2544. We disprove weak irrepresentability, which also disproves
strong irrepresentability. In the notation of that paper, the weak irrepresentability condition is∣∣∣Cn

21 (Cn
11)−1 sign

(
βn

(1)

)∣∣∣ < 1, where the inequality holds element-wise. This condition says that the “signed

sum” (per sign
(

βn
(1)

)
) of the coefficients of each OLS regression of a nonsupport variable on all support

variables, must be < 1. Because the sign is unknown ex-ante, weak irrepresentability must hold over all
signs, which is equivalent to demanding that L1 norm of each aforementioned regression must be < 1.
Consequently, to be representable, we just need to demonstrate one “representable” regression where this
doesn’t hold.
37This insight is clarified in Meinshausen and Yu (2009), who prove that LASSO solutions are L2-norm
consistent regardless of whether design matrices satisfy irrepresentability. Violations of irrepresentability
reduce the pressure on the LASSO objective function to yield sparse solutions, and with some nonvanishing
probability LASSO will recover both support and nonsupport variables on all the points along regularization
path which include the support (this is geometrically depicted in Figure 2 of Jia and Rohe (2015)). That
is, with some nonvanishing probability LASSO will select only strict supersets of the correct support on the
regularization path.
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Proposition C.1. Let k∗ = [2, 2] and K ′ = {[1, 2], [2, 1], [1, 1]}. The population level
regression Xk∗ ∼ XK′ is38

(C.1) X[2,2] = 1
2
(
X[2,1] +X[1,2]

)
− 1

4X[1,1] + ϵ E[ϵXK′ ] = 0

The L1 norm of (C.1) is 1
2 + 1

2 + 1
4 > 1, so X[2,2] is representable by {X[2,1], X[1,2], X[1,1]}.

Thus if Sα includes {X[2,1], X[1,2], X[1,1]} but not X[2,2], then with nonvanishing probability
LASSO will recover X[2,2] together with {X[2,1], X[1,2], X[1,1]} on all points of the regularization
path that include {X[2,1], X[1,2], X[1,1]}. Note that any higher number of arms or intensities
has such two arm-two nonzero intensity subexamples, for example treatment profiles where
only two arms ‘on’, and only considering the lowest two nonzero intensities. Thus this
irrepresentability failure can be embedded in many such Sα for any M ≥ 2, R ≥ 3. For these
Sα, with some nonvanishing probability LASSO will not retrieve Sα on the sample.

Proof of Proposition C.1. First observe that E[XK′X ′
K′ ] is nonzero hence invertible, so the

population regression is unique. To verify that (C.1) is the population regeression, we just
need to verify the first order condition E[ϵXK′ ] = 0 for ϵ := X[2,2]− 1

2

(
X[2,1] +X[1,2]

)
+ 1

4X[1,1].
We will show E[ϵ|XK′ ] = 0 which is sufficient 39.

Note that ϵXK′ is trivially 0 outside the treatment profile where both arms are “on”, since
both ϵ and XK′ are zero there. So we can narrow the analysis to just this one treatment
profile.

Consider Table C.1 of assignments within the treatment profile where both arms are “on”.

Table C.1. Assignments within treatment profile where both arms are “on”

T1 T2 X[1,1] X[1,2] X[2,1] X[2,2] ϵ
1 1 1 0 0 0 0.25
2 1 1 0 1 0 -0.25
1 2 1 1 0 0 -0.25
2 2 1 1 1 1 0.25

Note that each row occurs with equal probability, since each row corresponds to a distinct
unique policy that is assigned with equal propensity. It sufficies to show that E[ϵ|Xk] = 0
for each Xk ∈ {X[1,2], X[2,1], X[2,2]}. Let us show that E[ϵ|X[2,1]] = 0, the other cases are
demonstrated analagously. X[2,1] = 0 in rows 1 and 3, in which case ϵ = 0.25 or ϵ = −0.25
with equal probability with expected value 0. Likewise X[2,1] = 1 in rows 2 and 4, in

38We borrow the “population level” terminology from Angrist and Pischke (2009). Formally, the proposition
treats each Xk as a scalar random variable with appropriate unconditional and conditional distributions
P(X[2,2] = 1) = n

K , P(X[1,1] = 1|X[2,1] = 1) = 1 etc. Letting XK′ be the cartesian product
(X[2,1], X[1,2], X[1,1]), the proposition says that γ := ( 1

2 , 1
2 , 1

4 ) resolves arg minb∈R3 E
(
X[2,2] −X ‘

K′b
)2. The

necessary and sufficient first order condition is E[(X[2,2] −X ′
K′γ)XK′ ] = 0

39Using that E[ϵX] = E[E[ϵX|X]|X] = E[XE[ϵ|X]|X] = E[E[0|X]] = 0
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which case ϵ = −0.25 and ϵ = 0.25 with equal probability with expected value 0. Thus
E[ϵ|X[2,1]] = 0. Analagously it can be shown that E[ϵ|X[1,2]] = E[ϵ|X[1,1]] = 0. Having
established the first order condition the proposition is proved.

C.2. TVA without Puffering, (2.4), can fail irrepresentability. Simulation results
showing that these failures worsen in increasing R and M . Proposition C.1 finds an
irrepresentability failure that applies to all M ≥ 2, R ≥ 3. Here we show via simulation that
irrepresentability failures can worsen in increasing intensity and number of arms. Intuitively,
increasing R and M increases correlations within the matrix X and makes these failures more
dramatic. Consider the marginal effect covariate where all M arms are “on” with highest
intensity, i.e., Xk∗ for k∗ = (R−1, ..., R−1). Let K ′ = K−{k}, i.e. all the other covariates.
We will show that X∗

k is“representable” by XK′ , and increasingly so in increasing R and M .
Consider sample regressions Xn

k∗ ∼ Xn
K′

Xn
k∗ = γ̂0 +

∑
k∈K,k ̸=k∗

γ̂kX
n
k .

Simulation results depict ∑k∈K,k ̸=k∗ |γ̂k|.
In this simulation, we choose large n = 10, 000 so that with high probability the same

regression will exhibit representability on any other sample draw by Chebyshev’s inequality.
We consider two kinds of regressions: an “unstandardized” regression where the raw mar-
ginal effects covariates are regressed, and a “standardized” regression where the marginal
covariates are first standardized by the L2 norm. The latter corresponds to a preprocessing
step that LASSO packages typically apply before LASSO selection; we would like to know
if there can be representability failures even in this case. Indeed, we see the L1 norms
are greater than 1 in both cases, and the higher dosage marginal effects indicators become
increasingly representable (in terms of L1 norm) by lower dosage marginal effects indicators
in increasing R and M .

R M L1 norm (standardized vars) L1 norm (unstandardized vars)
3 2 1.73 1.26
3 3 3.67 2.32
3 4 7.66 4.2
4 2 1.77 1.24
4 3 3.98 2.43
4 4 8.27 4.14
5 2 1.87 1.28
5 3 3.78 2.29
5 4 7.90 4.70
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Appendix D. Robustness

In this section we consider robustness of TVA conclusions on our data. As motivated in
the body, we consider the plausible environment of Section 2 so that a data driven procedure
can reveal a set of relevant pooled policies and estimate it together with an estimate of the
single best policy.40 The main issues are then the sensitivity of TVA results to (1) level of
sparsity imposed and (2) the particular draw of the data. We discuss these below, and in
doing so also elaborate on the “admissible” LASSO penalties λ for evaluating robustness as
well as the choice of λ emphasized in the body. We intend for this to be helfpul as a user’s
guide for future practitioners.

Sparsity level
The LASSO penalty level λ, which determines the level of sparsity imposed by TVA, trades

off Type I and Type II error. A higher λ implies less of the first at the price of the second.
Our main recommendation is to err on the side of lower Type I error. For one, inclusion in
ŜT V A of false positives might (misleadingly) over-attenuate the best policy for its winner’s
curse if one of them emerges as the “second best”. Secondly, and more seriously, one of
these false positives might itself be selected as the best policy. From a policy standpoint
this is a particularly dangerous error in the context of government advice. So, adopting a
conservative stance, the admissible λ will be higher than lower.

We determine the sufficiently high λ through the following exercise, which can be applied
generally. Namely, we first consider raw sensitivity of best policy selection and winner’s
curse adjusted estimates to a range of λ, as in Figure D.1 panel A.41 Within this range,
we see that for immunizations/$, the policy (Info Hubs (All), No Incentives, SMS (All)) is
robustly selected across the range. On the other hand, for immunizations the policy (Info
Hubs, Slopes (All), SMS (All)) is selected for λ ≥ 0.47 while (No Seeds, High Slopes, Low
SMS) is selected for λ < 0.47. Furthermore, for immunizations/$ the winners curse adjusted
estimates of (Info Hubs, Slopes (All), SMS (All)) reject 0 except at λ ≤ 0.00045. On the
other hand, for the outcome of immunizations the winners curse adjusted estimate of (Info
Hubs, Slopes (All), SMS (All)) rejects 0 for the range λ ≥ 0.47. For λ < 0.47 the other
selected policy (No Seeds, High Slopes, Low SMS) always fails to reject 0.

Next, we interpret these preliminary findings in light on the aforementioned false positive
risk. To do this, we plot the unadjusted post-LASSO estimates of the best policy together
with the second best estimates, as in panel B of Figure D.1. This gives a sense of the the
nominal estimates/confidence intervals and the ‘perpetrators’ of winners curse attenuations.

40We emphasize again that exact sparsity of Assumption 2 can be practically relaxed to some of the
approximate sparsity regimes explored in Section 3 subsection ??
41Note that for immunizations, the support coverage (of the 75 policies) ranges from 3% (right side of
the diagram at the highest displayed λ) to 52% (left side of the diagram at the lowest displayed λ). For
immunizations/$ the support coverage ranges from 4% to 39%.
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We evaluate these nominal values per the observation by Taylor and Tibshirani (2015) that
a LASSO based procedure greedily favors false positives over true negatives, and so actual
type I error rates and p-values in post-selection inference are larger than nominal ones. Thus
nominally insignificant policies are even more likely to be true negatives, and nominally
borderline significant policies are likely to be insignificant as well. Our conservative principle
thus tells us dial up the λ to remove considerations of these. We demonstrate below.

Consider first the immunizations/$ outcome. For λ < 0.0008 these second bests (policies
in green and pink) have nominal OLS confidence intervals that fail to reject 0. Thus λ should
be increased to the range λ ≥ 0.0008. Since after λ = 0.00160 both this policy and the policy
support is entirely deselected, the admissible λ is the interval [0.0008, 0.00160). Per Figure
D.1, panel A1, the winner’s curse estimates are robust in this admissible interval.

Proceeding to the immunizations outcome, for λ ≤ 0.19 and λ ∈ (0.415, 0.452], even
nominal post-LASSO estimates of (No Seeds, High Slopes, Low SMS) fail to reject 0. For
the range 0.19 < λ < 0.358, the noisy and nominally insignificant policy (Info Hubs, High
Slope, No Reminder) is responsible for the winner’s curse attenuations. We therefore dial
up λ further. Doing so gives an extremely narrow range (λ ∈ [0.358, 0.415]) where (No
Seeds, High Slopes, Low SMS) is significant, and that too barely (p = 0.048 at the displayed
λ = 0.039). Keeping in mind the aforementioned observation by Taylor and Tibshirani
(2015), this nominal significance is particularly unreliable at the threshold. Moreover, it is
in stark contrast to the robust stability of the post-LASSO estimates of (Info Hubs, Slopes
(All), SMS (All)) at λ ≥ 0.39. Altogether this is strongly suggestive that (No Seeds, High
Slopes, Low SMS) is a policy that we should disinclude as a false positive. This is achieved
at λ > 0.452. Since after λ ≥ 0.53 this and all policies are dropped, the admissible λ for this
interval is (0.452, 0.53). Per Figure D.1, panel A2, the winner’s curse estimates are robust
in this admissible interval.

The two sets of admissible λ are for two entirely different scale of outcomes and cannot
usually be directly compared. However, since our specific implementation of LASSO on
PufferN is bijective with a p-value threshold in a backwards elimination (following Rohe
(2014)), following this bijection the set of admisslbe λ for immunization/$ is wider. So there
is some sense in which TVA estimator is more fragile. Another approach that evaluates
this fragility is a boostrapping analysis, which is explained shortly. Also since we use this
implementation with p value thresholds, for the result we highlight in the paper we use
“bottleneck” λ = 0.48 for immunizations, namely p = 5 × 10−13. This maps to λ = 0.0014
for immunizations/$. The corresponding Type I error level is thus constant.

Finally, we emphasize that checking a λ against a saturated regression of 75 raw coefficients
for finely differentiated policies – a kind of “heatmap” test – is generally not a reliable
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robustness check. In Figures F.1 (number of shots) and F.2 (shots/$) of our Online Ap-
pendix F we show the fully unrolled saturated regression together with the pooling. But it
is not clear how to interpret this with respect to pooling. The eye cannot sanity check the
combinatorially large number of joint hypothesis tests for pooling that become relevant when
more than one arm is on. Figure E.1, panel B from Section 3 considers a typical simulation
where eye-balling fails to sanity check the right pooling choices.

Bootstrapping analysis
It is natural to ask about the fragility of TVA to the particular draw of the data; precisely

this concern motivates, for example, our implementation of winner’s curse adjustments by
Andrews et al. (2021), as well as simulations in Section 3 that directly speak to the variance
of TVA. However, one might further wonder about just the observations in our dataset,
with a concern akin to one about leverage of observations. An intuitive approach to address
this is a bootstrapping analysis, where TVA is run on multiple bootstrapped samples. We
can then speak to variation in both the set of supports selected as well the estimates of
the pooled policies. Because this is a more exploratory analysis, its principal value lies in
speaking to relative stability of conclusions between the two policies for the two outcomes.
42 Results are presented in Figures F.3 (immunizations) and F.4 (immunizations /$) of
our Online Appendix and demonstrate a robust stability for the cost-effective outcome,
where the original support is selected in 96% of bootstrapped sample, against 77% for the
immunizations outcome.

42Note that we have slightly different goals here from the issue of bootstrapped standard errors.
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Figure D.1. Panel A shows the sensitivity of best-policy estimation per LASSO penalty λ for a sequential elimination
version of LASSO on PufferN(X, Y ). Estimates are plotted after adjusting for the Winner’s Curse. Panel B shows
the sensitivity of both the best and second-best policy estimates. Here estimates are shown prior to winner’s curse
adjustment i.e. when best policy selection happens.
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Appendix E. Extended Simulations

This section serves the purpose of providing complementary evidence and extending the
discussion on TVA’s performance (1) in the environment described in Section 2, (2) relative to
alternative estimation strategies and (3) under relaxation sparsity and lower-bound assumptions.

E.1. Properties of TVA. Simulation performance of TVA attests to its main theoretical
properties: support consistency, best policy estimation consistency, and normally distributed
coefficient estimates.

Figure 3 in the main paper depicts these results. For TVA consistency, consider the blue
and green performance points in panels B and D. Panel B shows that even for low n, TVA
includes some of the best policies in Ŝα as well as rapidly (in n) and consistently including the
minimum dosage best policy, that is of particular interest to the policymaker. Because TVA
pools policies that comprise the best policy, redundancies to winner’s curse attenuations are
minimized; Panel D shows that MSE of the best policy starts small and quickly falls to 0
(blue dots). Finally, besides best policy consistency, a more global concern is whether the
TVA estimator is support consistent in the first place. This is explicitly verified in further
simulations of our Online Appendix (e.g., Figure E.3). As elaborated in Section 3.3, this
overall performance is in marked contrast to other estimators.

Besides being consistent, TVA estimates are also distributed asymptotically normally„
which permits reliable inference in the usual manner. This is demonstrated in Figure 3,
Panel A which depicts a close match between the empirical CDF of standardized marginal
policy estimates η̂κ−ηκ

se(η̂κ) (for κ ∈ ŜT V A, entered as a mixture distribution with equal weights)
and the CDF of a standard normal distribution for a series of sample sizes. First, abstracting
away from model misspecification complications, consider the case of a large sample size
(n = 15, 000) where the empirical support of TVA is always correct (blue empirical CDF).
The almost perfect match to the theoretical CDF speaks to normally distributed estimates
of all M = 3 components of the mixture distribution.43 The cases where n < 15, 000 relax
insistence on correct model specification and demonstrate that this is not an artifact of a
very large sample size. Here, η

ŜT V A,κ
is the population pseudo-parameter in the (potentially)

mispecified model. Even for rather moderate sample sizes (n = 3000), we see normally
distributed estimates.

E.2. Performance relative to alternatives.

E.2.1. Direct OLS. Besides the specfic issue of best poicy estimation mentioned in Section
3.3.1, direct OLS has low power. This is depicted in Figure E.1, where simulated OLS
estimates of all the unique policies (2.1) contrast with the pruned and pooled estimation
43For this exercise we use a single randomly chosen configuration C that determines the coefficients ηκ,
κ ∈ {1, · · ·M} against which to compare our estimates.



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 63

(2.2). As expected, the estimated effects of the pooled policies are less dispersed (panel A).
In this visualization, we deliberately choose a configuration where the effects of different
policies are similar, so that these histograms overlap. This makes the task of discovering the
correct way to pool an interesting challenge (further exemplified in the direct OLS estimates
of a single simulated draw of data in Panel B, where 95%-confidence intervals of policies
from distinct pools strongly overlap), and it highlights the need of a disciplined procedure.

E.2.2. Naive LASSO. As outlined in section 3.3, there are two ways one could “naively”
apply LASSO. The first is to disregard pooling, and, because sparse dosages might also
mean a sparse set of policies, apply LASSO on the unique policy specification (2.1). While
there is no theoretical issue with this procedure in terms of model consistency, using this
for policy estimation leads to much the same performance limitations as direct OLS with
regards to best policy estimation, namely a persistently high best policy MSE stemming
from overly severe correction from Andrews et al. (2021)’s winner’s curse adjustment.

Figure E.2 which contrasts this “No pooling, only pruning” version of LASSO to TVA on
best policy estimation, documents this. Panel A shows that while the MSE for our TVA
estimator quickly converges to 0, the one for the LASSO estimator persistently lies above 0.1
regardless of n. Panels B and C verify that this is driven by winner’s curse attenuations, and
not model selection issues. Panel B tracks the MSE conditional on both procedures selecting
the right model of their respective specifications as the oracle; it is the same pattern as in
Panel A. Panel C explicitly shows the shrinkage imposed by the best policy estimator; it is
much higher when the model selection doesn’t pool.

The second way to “naively” apply LASSO is to consider both pooling and pruning as
important, but adopt a sign inconsistent model selection procedure by applying LASSO
directly on 2.4 without a Puffer transformation. Figure E.3 establishes the contrast with
TVA. As expected, simulations attest to inconsistent support selection (Panel A). On the
question of best policy estimation, it is more subtle. This naive LASSO does manage to
identify at least some of the best policy, furthermore the actual MSE of the best policy is
comparable to TVA (Panel C). However, a key deficiency from a policymaking perspective
is that it fails to select the minimum dosage best policy with substantial probability relative
to TVA (Panel D).44.

E.2.3. Debiased LASSO. Because at a higher level we are interested in high dimensional
inference 45 one alternative to a two step process of model selection and inference is the
44The reason why the naive LASSO will select some best policy stems from the fact that though it is not
sign consistent, it is l2 consistent, which means that it will select a strict superset of the correct support
Meinshausen and Yu (2009). Basically, this will prune too little and pool too finely. In particular, as seen in
our simulations, it will often cleave the best policy. The minimum dosage best policy is then at substantial
risk of not being in the pool selected as the best in the data
45albeit still in a K < n regime
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so-called debiased LASSO Javanmard and Montanari (2014), Javanmard and Montanari
(2018), Van De Geer (2019). The basic idea is that since LASSO permits high dimensional
estimation but at the price of downwardly biased coefficients, but also since this bias is
estimable, we can reverse the bias. In particular, to the LASSO coefficients we can add a
debiasing term proportional to the subgradient at the ℓ1 norm of the LASSO solution θ̂n

θ̂u = θ̂n + (1/n)MXT (Y −Xθ̂n)

It is also possible to supply standard errors for these debiased coefficients. Note, however,
that these debiased coefficients are almost surely never exactly zero, so that there is no
question of sparsity. We thus only need to consider applying debiased LASSO to (2.1).

In Figure E.4 we show that the debiased LASSO procedure suffers from the similar
limitations as direct OLS estimation, especially with regards to best policy estimation. That
it does better with winner’s curse attenuations relative to the same adjustments on direct
OLS possibly indicates that it might interact better with those adjustments despite the
fact that Gauss-Markov theorem guarantees that the unadjusted direct OLS must dominate
the unadjusted debiased LASSO. Nevertheless, TVA sharply dominates both alternatives
because it can pool.

E.2.4. “Off the Shelf” Bayesian approaches: Spike and Slab LASSO. Because we envision a
world in which there are many potential treatment variant aggregations to be done through
pooling and pruning, this attests to our prior about the environment. Indeed, LASSO
estimates have a Bayesian interpretation in terms of Laplace priors. One can ask whether
a more sophisticated, “explicitly” Bayesian approach can address our final objectives. This
paradigmatically different route is the topic of future work. Below, we just show that“off
the shelf” Bayesian approaches are unlikely to help. In particular, we show that a direct
application of spike and slab formulations – the most intuitively relevant method – underperforms
relative to our TVA procedure. The Spike and Slab LASSO uses a prior of the form

π(β|γ) =
p∏

i=1
[γi ψ1(βi)︸ ︷︷ ︸

Slab

+(1− γi)ψ0(βi)︸ ︷︷ ︸
Spike

], γ ∼ π(γ)

with γ0 and γ1, two Laplace distributions with very high (λ0) and a very low (λ1) scale
parameters respectively (i.e. λ0 ≫ λ1). This allows solving for the posterior of both the
model parameters as well as the model itself (Ročková and George (2018)).

In Figure E.5 we contrast a Puffer-transformed Bayesian Bootstrap Spike and Slab LASSO
(BBSSL - Nie and Ročková (2022)) to TVA. The performance of BBSSL is very similar to
that when applying Naive LASSO to the marginal specification (2.4). BBSSL is support
inconsistent (Panel A) and is clearly outperformed on minimum dosage best policy selection
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(Panel D). It does however identify at least one best policy most of the time (Panel C) and
has a best policy MSE close to that of TVA (Panel B).

E.3. Performance Under Five Sparsity Relaxation Regimes. Our main theoretical
guarantees in Section 2 hold in an environment with exact sparsity and with marginal effect
sizes uniformly bounded away from 0. Here we explore practical performance relaxing this
in several plausible ways. Although performance of TVA suffers, it is still strong; moreover,
TVA does better than the next best practical alternative of applying naive LASSO to the
marginal specification (2.4).

We consider five regimes of sparsity and effect size relaxations. Although the support
configurations are no longer necessarily of cardinality M , they are still randomly chosen as
in Section 3.1. In Regimes 1 and 2 we relax exact zeros in the non-primary marginals to
small effect sizes; these are either rapidly diminishing as Θ( 1

n
) (Regime 1) or moderately

diminishing as Θ( 1√
n
) (Regime 2).46 In Regime 3 we further relax sparsity in the first regime

by expanding the true support to include marginal effects of both large and medium sizes.
In Regime 4 we relax the lower bound on marginal effect sizes for the primary marginals,
diminishing at a rate Θ( 1

n0.2 ) between moderate and rapid. In the fifth regime we further
relax sparsity in Regime 4 by expanding the support with rapidly diminishing coefficients.
A summary of the regime configurations is described below:

(1) Regime 1: M constant marginal effect sizes in [1, 5] & M rapidly diminishing
remaining marginal effect sizes in [1, 5]/n.

(2) Regime 2: M constant marginals in [1, 5] & M moderately diminishing remaining
marginals ([1, 5]/

√
n).

(3) Regime 3: M large constant marginals in [5, 10], M medium marginals in [1, 2] &
M rapidly diminishing remaining marginals in [1, 5]/n.

(4) Regime 4: M decreasing marginals in [1, 5]/n0.2 (and zero marginals everywhere
else).

(5) Regime 5: M decreasing marginals in [1, 5]/n0.2 & M moderately diminishing
remaining marginals in [1, 5]/

√
n.

The main finding is that support accuracy of TVA is generally strong. Even in the
case of model misspecification, the MSE of the best policy is still low for moderate sample
size. Furthermore its distinct advantage relative to alternatives with regards to best policy
estimation — the much more reliable selection of the minimum dosage best policy — remains
equally strong.

Figure E.6, panel A speaks to the first pattern: even if support accuracy suffers from
relaxing sparsity requirements performance remains generally high. For regimes 1-3 for
example, support accuracy converges to 100% albeit more slowly than in the exactly sparse
46Note that only a diminishing rate retains a threat of misspecified model selection at any n.
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environment (and convergence in R2 is, as expected, slower than in R1). For regimes 4
and 5, even though TVA is support inconsistent, this does not imply a higher MSE of the
best policy demonstrating that model misspecification is not generally threatening with
regards to this final objective. Panel B shows this very clearly where MSE is steadily
decreasing and comparable across all regimes. Performance on some best policy selection
— the easier task — seems also particularly unaffected by the sparsity relaxations, with
accuracy ranging between 80%-90% (panel C). Finally TVA’s distinctive advantage over all
alternatives explored in Section 3.3 is the reliable selection of the minimum dosage best policy.
Performance on minimum best policy selection remains generally strong across regimes (panel
D) with a steady increase as sample size grows. Notably the minimum best inclusion rate is
above 90% across all regimes for even moderate sample sizes (n = 3000).

Finally, Figures E.7-E.11 demonstrate that TVA strongly outperforms naive LASSO across
regimes for support accuracy and minimum dosage best policy selection and sometimes
significantly so (e.g. Regime 3, Figure E.9). This suggests that naive LASSO is an unhelpful
way to proceed particularly if one were interested in the post-LASSO set in addition to the
best policy. Both methods then, are equally strong at identifying at least one best policy and
with respect to the final MSE of the best policy with performance mostly ranging between
80%-100% for the former and never higher than 0.75 (R1, R3) for the latter. However
only TVA helps with the joint best policy objectives of low MSE while reliably choosing
the minimum dosage best policy. This is compelling in regimes 2 and 3 where LASSO’s
minimum best selection rate hovers around 60-70% against TVA reaching 90% accuracy for
a moderate sample size (n = 3000) already.
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(b) Estimated Coefficients

Figure E.1. This figure presents results from a simulation setting with n = 4000 and where
4 pooled policies (each composed of 3-8 unique policies) are non-zero with effects 0.3, 0.8,
1.2 and 1.5 respectively. For OLS applied to (2.1) and TVA, we show both the distribution
of policy estimates across 300 simulations (panel A) and the estimated policy coefficients
for one representative simulated draw (panel B). Note that the color labeling for OLS plots
corresponds to the true underlying pooled and pruned policies. For the TVA density plots,
we condition on the event that the TVA estimator has selected the correct support (mean
support accuracy is 92.2% across simulations).
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Figure E.2. A plot comparing the performance of the TVA estimator to
applying LASSO on the unique policy specification (2.1). Panel A compares
the MSE of the hybrid estimators of Andrews et al. (2021) for winner’s curse-
adjusted best policy estimation for both methods. Panel B is exactly the
same but conditional on selecting the true support in (2.4) and (2.1). Panel C
compares the amount of shrinkage imposed by the winner’s curse adjustment
for both methods, in percentage of the initial coefficient. In all simulations,
there are 20 simulations per n
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Figure E.3. A plot comparing the performance of the TVA estimator to
applying LASSO on (2.4) using Chernozhukov et al. (2015). Panel A compares
average support accuracy and Panel B compares MSE of the best policy
treatment effect as a function of sample size n. Panels C and D look at best
policy selection accuracies. On panel C points are slightly jittered for better
readability. There are 20 simulations per support configuration per n, for five
support configurations.
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Figure E.4. A plot comparing the performance of the TVA estimator to
applying OLS on (2.1) and a debiased LASSO on (2.1) following Javanmard
and Montanari (2014). Panel A compares the amount of shrinkage imposed
by the winner’s curse adjustment as percentage of the initial coefficient. Panel
B compares the mean squared error of the best policy estimate as a function
of sample size n. There are 20 simulations per n.
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Figure E.5. A plot comparing the performance of the TVA estimator to
applying Bayesian Bootstrap Spike and Slab LASSO (Nie and Ročková (2022))
on (2.4). Panel A compares support accuracy and panel B compares MSE on
the final WC adjusted estimate. Panels C and D compare best policy inclusion
measures as a function of n. For BBSSL the Laplace parameters are chosen as
λ1 = 10−n/100 and λ0 ranging from 1 to 105 (100 steps). This yields a solution
path as a function of λ0 and policies selected at least 95% of times along the
solution path compose the final support. There are 20 simulations per support
configuration per n for five support configurations.
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Figure E.6. This figure shows the performance of the TVA estimator under
relaxations of the sparsity assumptions. We show support accuracy (panel
A), MSE of the best policy (panel B), Some Best policy inclusion rate (panel
C) and Minimum Best policy inclusion rate (panel D) as a function of n for
five different levels of violating sparsity requirements (R1-R5). Per regime,
there are 20 simulations per support configuration per n, for five support
configurations.
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Figure E.7. A comparison between the TVA estimator and a direct
implementation of LASSO on (2.4) for support accuracy, MSE and best policy
inclusion measures, under regime 1. There are 20 simulations per support
configuration per n, for five support configurations.
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Figure E.8. A comparison between the TVA estimator and a direct
implementation of LASSO on (2.4) for support accuracy, MSE and best policy
inclusion measures, under regime 2. There are 20 simulations per support
configuration per n, for five support configurations.
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Figure E.9. A comparison between the TVA estimator and a direct
implementation of LASSO on (2.4) for support accuracy, MSE and best policy
inclusion measures, under regime 3. There are 20 simulations per support
configuration per n, for five support configurations.
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Figure E.10. A comparison between the TVA estimator and a direct
implementation of LASSO on (2.4) for support accuracy, MSE and best policy
inclusion measures, under regime 4. There are 20 simulations per support
configuration per n, for five support configurations.
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Figure E.11. A comparison between the TVA estimator and a direct
implementation of LASSO on (2.4) for support accuracy, MSE and best policy
inclusion measures, under regime 5. There are 20 simulations per support
configuration per n, for five support configurations.
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Appendix F. Extended Robustness

This section complements the discussion of Appendix D. We report the results from a
fully saturated regression on the 75 unique policies to emphasize that some pooling choices
made by TVA can be non-trivial making eyeballing a generally non-reliable sanity check.
We also elaborate more on the bootstrapping analysis suggested in Appendix D to explore
TVA performance in the context of our experiment.

Fully saturated regression Below we report the results from running a saturated regression
of 75 raw coefficients for finely differentiated policies. We contrast this with the pooling and
pruning choices made by the TVA estimator highlighted in different colors (red policies are
pruned while green / blue policies are pooled together). This makes the point very clearly
that a simple eye-balling of these results would have been misleading in inferring the choices
made by TVA. Two examples are worth noting:

• Some seemingly efficient policies at standard confidence levels are pruned while others
are pooled together: this is striking when comparing the policies in Figure F.2
(Shots/$), Panel A (No Seed) in the last pooling profile (all were pruned) with those
in Panel B (Trusted Seed) in the last pooling profile (all were pooled and kept in the
support).
• Some policies that are individually underpowered (though positive) were pooled

together (and kept in the support) suggesting that the pool ended up being powered
and highly effective. An example can be seen in Figure F.1 (Measles Shots), Panel
C (Gossip Seed) in the last pooling profile.

Bootstrapping analysis It is natural to ask about the fragility of TVA to the particular
draw of the data; precisely this concern motivates, for example, our implementation of
winner’s curse adjustments by Andrews et al. (2021), as well as simulations in Section 3 that
directly speak to the variance of TVA. However, one might further wonder about just the
observations in our dataset, with a concern akin to one about leverage of observations. An
intuitive approach to address this is a bootstrapping analysis, where TVA is run on multiple
bootstrapped samples. We can then speak to variation in both the set of supports selected
as well the estimates of the pooled policies. Because this is a more exploratory analysis, its
principal value lies in speaking to relative stability of conclusions between the two policies
for the two outcomes. 47

47Note that we have slightly different goals here from the issue of bootstrapped standard errors
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The 200 bootstrapped samples we run for each outcome are stratified at the policy level and
results for each sample are displayed in Figures F.3 (immunizations) and F.4 (immunizations
/$). For immunizations/$, the support from the original sample was LASSO selected in 96%
of bootstrapped samples and the estimated coefficients are concentrated around our main
estimate, including the best policy (Info Hubs (All), No Incentives, SMS (All)). Notably
there is almost no winner’s curse adjustment since the best policy is consistently well
separated from the second best. For the immunizations outcome we again observe little
variation in the support, and the most effective policy (Info Hubs, Slopes (All), SMS (All))
is identified as such in 77% of the bootstrapped samples. However, there is considerably more
variation in the winner’s curse estimates, with some bootstrap samples sharply attenuating
the best policy estimate. Taken altogether, this speaks to tighter competition and more
sensitivity to leverage of certain observations for immunizations than immunizations/$.
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Figure F.1. A plot showing the coefficients from the OLS regression on all
75 unique policies for the Measles shot outcome. Panels are organized by
seeds and within each panel the pooling profiles are delimited by dashed lines.
Policies shown in red are policies pruned by the TVA Estimator while policies
shown in other colors were pooled together.
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Figure F.2. A plot showing the coefficients from the OLS regression on all
75 unique policies for the Shots/$ outcome. Panels are organized by seeds and
within each panel the pooling profiles are delimited by dashed lines. Policies
shown in red are policies pruned by the TVA Estimator while policies in blue
were pooled together.
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Figure F.3. Results of post-LASSO OLS estimates for the Measles Shot outcome are shown for 200 bootstrapped
samples stratified at the policy level. The raw data marginal effects support is shown in white and “Bootstrap
Supports” 1 and 2 are the two unique supports that were selected across all bootstrapped samples. We also report
winner’s curse adjusted coefficients for the raw data (green) and the bootstrapped samples (red). On the x-axis,
the raw data best pooled policy is highlighted in red and was selected in 77% of the bootstrapped samples. Finally
the minimum dosage best policy (Info Hubs, Low Slopes, Low SMS) is only selected when the TVA estimator
actually selects the best pooled policy, hence 77% of the time.
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Figure F.4. Results of post-LASSO estimates for the Shots/$ outcome are shown for 200 bootstrapped samples
stratified at the policy level. The raw data marginal effects support is shown in white and “Bootstrap Supports”
1-3 are the three unique supports that were selected across all bootstrapped samples. We also report winner’s
curse adjusted coefficients for the raw data (green) and the bootstrapped samples (red). On the x-axis, the raw
data best pooled policy is highlighted in red and was selected in 96% of the bootstrapped samples. Finally, the
minimum dosage best policy (Info Hubs, No Incentives, Low SMS) is only selected when the TVA estimator
actually selects the best pooled policy, hence 96% of the time.
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Appendix G. Winner’s Curse Extended

G.1. Which policies can be local alternatives? As we said, nothing prevents policies
in different treatment profiles from being local alternatives. But in fact, there can be other
non pooled policies within a treatment profile that can be local alternatives. Proposition
G.1 fully characterizes the local alternatives respecting the assumptions on the environment,
particularly Assumption 3.

Proposition G.1. Let κ, κ′ ∈ ST V A be local alternatives, i.e., η0
ST V A,κ = η0

ST V A,κ′ + rκκ′√
n

for
some rκκ′ fixed in n. Then, for α0 to respect Assumption 3, one of the following has to hold:

(1) P (κ) ̸= P (κ′) (i.e., κ and κ′ have different treatment profiles 48), or
(2) P (κ) = P (κ′), and κ and κ′ are nowhere adjacent in the Hasse diagram.49

These conditions are also sufficient to allow for local alternatives, in that for any ST V A ∈
P|Λ, all pairs κ, κ′ ∈ ST V A meeting condition (1) or (2) can be simultaneously made local
alternatives by some choice of α0 satisfying Assumption 3.

Proof. The only non-trivial case is for κ and κ′ that are policy variants, i.e. have the same
treatment profile. Here the proof follows the basic intuition from the Hasse diagram. If κ
and κ′ were adjacent anywhere in the diagram (say for some treatment combinations k, k′

such that κ pools k and κ′ pools k′) then αmin{k,k′} = rκκ′√
n

, violating Assumption 3. On
the other hand, if κ and κ′ are not adjacent anywhere, one can consider the policies ”in
between” them, i.e. the policies ζ1, ..., ζn ∈ ST V A such that κ is adjacent to ζ1, κ′ is adjacent
to ζn, ζi is adjacent to ζi+1 for i /∈ {1, n}, and the union of these ζi pools all z such that
min{k, k′} < z < max{k, k′} and which are neither pooled by κ nor κ′ . Then κ and κ′

can be made local alternatives with the relevant “in between” marginals from α0 satisfying
Assumption 3 , by making the |η0

ST V A,ζi
| sufficiently large. Following this construction where

applicable (in each stage of the iterative procedure where a new pair is made into local
alternatives, to ensure that prior local alternatives remain local alternatives, the absolute
magnitude of the policy effects of the prior alternatives may have to be increased), an entire
set α0 satisfying Assumption 3 ensues.

G.2. Does Andrews et al. (2021) extend to asymptotic normality and model
selection?’ The main text of Andrews et al. (2021) focuses on the case where the estimators
in question, X(κ) are exactly jointly normally distributed. While two extensions are presented,
one for a conditioning event such as model-selection (addressed in their Appendix A) and
48This is a slight abuse of notation, since P (·) was defined originally over treatment combinations, not pooled
policies. So, P (·) here is the simply the well defined extension to the latter.
49Formally, this is the condition that for any treatment combinations k, k′ such that κ pools k and κ′ pools
k′, either k and k′ are incomparable or there is a treatment combination z pooled by neither κ nor κ′ such
that min{k, k′} < z < max{k, k′}.
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another for the case of asymptotic normality which is required for practical settings such as
regression (in their Appendix D), the paper does not formally work out the case with both
issues present.

We have both in our setting, under Assumptions 1-6. We have a conditioning event
(ŜT V A = ST V A) occurring with probability tending to one and we are in a regression setting
with asymptotic normality. So while the theoretical properties of the estimator in our setting
are highly plausible and coherent with our simulations below, the extension to the nested
case of model selection remains to be proven. It is beyond the scope of our present paper to
nest both of their extensions, and we leave it for future work.

So, in Section 2.5 of the main text, we assume that the distribution is exact. This allows us
to focus on how local alternatives in our Hasse diagram may impact the problem. Therefore,
we assume

X ∼ N (µ,Ω) .

Then we can exactly apply the results of Proposition 6 in Andrews et al. (2021), and build
the hybrid confidence set.



TREATMENT VARIANT AGGREGATION TO SELECT POLICIES 86

Appendix H. Appendix Figures

Figure H.1. Experimental Design
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Figure H.2. Effects on the number of measles vaccinations relative to control
(5.29) by reminders, incentives, and seeding policies, for the full sample.
The specification includes a dummy for being in the Ambassador Sample,
is weighted by village population, controls for district-time fixed effects, and
clusters standard errors at the sub-center level.
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Figure H.3. National Immunization Schedule for Infants, Children, and
Pregnant Women.
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Figure H.4. Overview of Survey Data Collection Activities.
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Appendix I. Substitution Patterns

Table I.1. Incentive Treatment Effects for Non-Tablet Children from Endline
Data

Dependent variable:
At Least 2 At Least 3 At Least 4 At Least 5 At Least 6 At Least 7 Measles 1

(1) (2) (3) (4) (5) (6) (7)
High Slope −0.158 −0.052 −0.076 −0.196 −0.187 −0.027 −0.135

(0.062) (0.072) (0.093) (0.106) (0.101) (0.105) (0.108)

High Flat −0.021 −0.024 −0.091 −0.078 −0.053 0.102 0.185
(0.088) (0.063) (0.078) (0.155) (0.152) (0.167) (0.143)

Low Slope 0.090 0.175 0.104 −0.026 −0.152 −0.079 0.051
(0.064) (0.060) (0.085) (0.099) (0.080) (0.077) (0.100)

Low Flat 0.004 0.069 −0.010 −0.110 −0.005 −0.079 −0.102
(0.076) (0.096) (0.122) (0.176) (0.160) (0.173) (0.148)

Control Mean 0.69 0.54 0.4 0.31 0.17 0.11 0.39
Total Obs. 1179 1165 1165 1042 1042 706 613
Zeros Replaced 0 0 0 0 0 0 0

Note: Specification includes District Fixed Effects, and a set of controls for seeds and reminders. Control mean shown in
levels, and standard errors are clustered at the SC Level

Table I.2. Seeds Treatment Effects for Non-Tablet Children from Endline
Data

Dependent variable:
At Least 2 At Least 3 At Least 4 At Least 5 At Least 6 At Least 7 Measles 1

(1) (2) (3) (4) (5) (6) (7)
Random −0.101 −0.045 0.0003 −0.143 0.015 0.058 −0.017

(0.059) (0.066) (0.088) (0.122) (0.102) (0.102) (0.101)

Information Hub −0.040 −0.121 −0.025 −0.112 0.018 −0.105 −0.092
(0.082) (0.080) (0.113) (0.135) (0.123) (0.073) (0.119)

Trusted 0.034 −0.033 0.111 0.027 0.147 −0.011 0.106
(0.070) (0.073) (0.100) (0.128) (0.118) (0.107) (0.111)

Trusted Information Hub −0.103 −0.082 −0.031 −0.209 −0.099 −0.057 −0.344
(0.075) (0.079) (0.100) (0.113) (0.086) (0.082) (0.099)

Control Mean 0.78 0.66 0.5 0.58 0.3 0.22 0.62
Total Obs. 469 461 461 389 389 251 231
Zeros Replaced 0 0 0 0 0 0 0

Note: Specification includes District Fixed Effects, and a set of controls for incentives and reminders. Control mean shown
in levels, and standard errors are clustered at the SC Level
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Table I.3. Reminders Treatment Effects for Non-Tablet Children from
Endline Data

Dependent variable:
At Least 2 At Least 3 At Least 4 At Least 5 At Least 6 At Least 7 Measles 1

(1) (2) (3) (4) (5) (6) (7)
33% 0.079 0.093 0.070 0.033 0.019 −0.138 0.011

(0.058) (0.066) (0.085) (0.104) (0.094) (0.080) (0.086)

66% 0.031 0.096 0.042 −0.074 −0.073 −0.044 −0.097
(0.053) (0.055) (0.069) (0.091) (0.079) (0.067) (0.084)

Control Mean 0.64 0.48 0.34 0.28 0.19 0.13 0.46
Total Obs. 1179 1165 1165 1042 1042 706 613
Zeros Replaced 0 0 0 0 0 0 0

Note: Specification includes District Fixed Effects, and a set of controls for seeds and incentives. Control mean shown in
levels, and standard errors are clustered at the SC Level
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Appendix J. Data Validation

A household survey was conducted to monitor program implementation at the child-level—
whether the record entered in the tablet corresponded to an actual child, and whether the
data entered for this child was correct. This novel child verification exercise involved J-PAL
field staff going to villages to find the households of a set of randomly selected children
which, according to the tablet data, visited a session camp in the previous four weeks.
Child verification was continuous throughout the program implementation, and the findings
indicate high accuracy of the tablet data. We sampled children every week to ensure no
additional vaccine was administered in the lag between them visiting the session camp and
the monitoring team visiting them. Data entered in the tablets was generally of high quality.
There were almost no incidences of fake child records, and the child’s name and date of birth
were accurate over 80% of the time. For 71% of children the vaccines overlapped completely
(for all main vaccines under age of 12 months). Vaccine-wise, on average, 88% of the cases
had matching immunization records. Errors seem genuine, rather than coming from fraud:
they show no systematic pattern of inclusion or exclusion and are no different in any of the
treatment groups.
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Appendix K. Baseline Statistics

Table J.1. Selected Baseline Statistics of Haryana Immunization

Population-Weighted Average
Baseline Covariates–Demographic Variables
(Village Level Averages)
Fraction participating in Employment Generating Schemes 0.045
Fraction Below Poverty Line (BPL) 0.187
Household Financial Status (on 1-10 scale) 3.243
Fraction Scheduled Caste-Scheduled Tribes (SC/ST) 0.232
Fraction Other Backward Caste (OBC) 0.21
Fraction Hindu 0.872
Fraction Muslim 0.101
Fraction Christian 0.001
Fraction Buddhist 0
Fraction Literate 0.771
Fraction Unmarried 0.05
Fraction of Adults Married (living with spouse) 0.504
Fraction of Adults Married (not living with spouse) 0.002
Fraction of Adults Divorced or Seperated 0.001
Fraction Widow or Widower 0.039
Fraction who Received Nursery level Education or Less 0.17
Fraction who Received Class 4 level Education 0.086
Fraction who Received Class 9 level Education 0.158
Fraction who Received Class 12 level Education 0.223
Fraction who Received Graduate or Other Diploma level Education 0.081
Baseline Covariates–Immunization History of Older Cohort
(Village Level Averages)
Number of Vaccines Administered to Pregnant Mother 2.271
Number of Vaccines Administered to Child Since Birth 4.23
Fraction of Children who Received Polio Drops 0.998
Number of Polio Drops Administered to Child 2.989
Fraction of Children who Received an Immunized Card 0.877
Number of Observations
Villages 903
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Appendix L. Information Hub Questions

(1) Random seeds: In this treatment arm, we did not survey villages. We picked six
ambassadors randomly from the census.

(2) Information hub seed: Respondents were asked to identify who is good at relaying
information.

We used the following script to ask the question to the 17 households:
“Who are the people in this village, who when they share information,
many people in the village get to know about it. For example, if they share
information about a music festival, street play, fair in this village, or movie
shooting many people would learn about it. This is because they have a
wide network of friends, contacts in the village and they can use that to
actively spread information to many villagers. Could you name four such
individuals, male or female, that live in the village (within OR outside your
neighbourhood in the village) who when they say something many people
get to know?”

(3) “Trust” seed: Respondents were asked to identify those who are generally trusted to
provide good advice about health or agricultural questions (see appendix for script)

We used the following script to elicit who they were:
“Who are the people in this village that you and many villagers trust, both
within and outside this neighbourhood? When I say trust I mean that when
they give advice on something, many people believe that it is correct and
tend to follow it. This could be advice on anything like choosing the right
fertilizer for your crops, or keeping your child healthy. Could you name four
such individuals, male or female, who live in the village (within OR outside
your neighbourhood in the village) and are trusted?”

(4) “Trusted information hub” seed: Respondents were asked to identify who is both
trusted and good at transmitting information

“Who are the people in this village, both within and outside this neighbourhood,
who when they share information, many people in the village get to know
about it. For example, if they share information about a music festival,
street play, fair in this village, or movie shooting many people would learn
about it. This is because they have a wide network of friends/contacts in
the village and they can use that to actively spread information to many
villagers. Among these people, who are the people that you and many
villagers trust? When I say trust I mean that when they give advice on
something, many people believe that it is correct and tend to follow it. This
could be advice on anything like choosing the right fertilizer for your crops,
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or keeping your child healthy. Could you name four such individuals, male
or female, that live in the village (within OR outside your neighbourhood
in the village) who when they say something many people get to know and
are trusted by you and other villagers?”
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