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1 Executive Summary of RTS,S SAGE/MPAG Working Group’s 

assessment and proposed recommendations 

Information available preceding the Malaria Vaccine Implementation Programme  

In July 2015, based on the results from the Phase 3 trial of the malaria vaccine RTS,S/AS01, the European 

Medicines Agency (EMA) issued a positive scientific opinion on the vaccine under Article 58, concluding 

that the vaccine had an acceptable safety profile and that the benefits of the vaccine outweighed the 

risks. The Phase 3 trial of the RTS,S/AS01 malaria vaccine was conducted in two age-groups, with the 

first vaccine dose given either between the ages of 6 and 12 weeks or between 5 and 17 months.  WHO 

issued a position paper summarizing the assessment and recommendations for this vaccine. The vaccine 

was efficacious, with the potential to provide important impact when added to current malaria control 

interventions. It was well-tolerated with a known association with febrile seizures.   

Three potential safety signals were noted in the Phase 3 trial. First, in children in the older age category, 

a higher number of meningitis cases occurred in the malaria vaccine group compared to the control 

group. However, excess meningitis cases were not temporally related to the timing of vaccine doses, 

were clustered at 2 of 11 trial sites, and there were a range of etiologies in the cases identified. In 

addition, an excess of meningitis was not seen in children vaccinated in the younger age group. Whether 

the increase in meningitis was due to chance or represented a true adverse effect of the vaccine was 

unknown. Second, in children in the older age group, in the context of a statistically significant decrease 

in all forms of severe malaria combined, there was an increased number of cerebral malaria cases (a 

subset of severe malaria) in the malaria vaccine groups compared with the control group. This finding 

was from an unplanned post-hoc analysis and its significance in relation to vaccination was unclear. An 

excess of cerebral malaria was not seen in children vaccinated in the younger age group. Third, and also 

in an unplanned post hoc analysis, there was an imbalance in mortality among girls, with about 2-fold 

higher deaths among girls who received RTS,S/AS01 than among girls who received comparator vaccines 

(p=0.001); the ratio of deaths among boys was slightly lower in the RTS,S/AS01 arms versus the control 

arm. A relationship between the RTS,S/AS01 vaccine and these findings has not been established. The 

EMA and WHO advisory bodies concluded that all these described safety signals may have arisen by 

chance. 

The vaccine had a larger impact on malaria when given at 5-17 months of age and WHO, on advice from 

SAGE and MPAC, agreed that the vaccine, given as a 4-dose schedule to children from 5 months of age, 

could have high impact, but recognized there were outstanding questions to be addressed before a 

recommendation for broader use could be made. Recognizing that in children who received 3 doses, 

there was an initial reduction in severe malaria, but this was balanced by an increase in severe malaria 

from around 18 months after the initial vaccine course, an important question was whether it was 

operationally feasible to reach children at high coverage with a 4-dose schedule (with the 4th dose 

provided around 2 years of age); and consequently, the extent to which the protection demonstrated in 

children aged 5 - 17 months in the Phase 3 trial could be replicated in the context of use of the vaccine 

in routine health systems. Other questions to be addressed were impact of the vaccine on mortality 

(including gender-specific mortality) when it was in routine use and whether the excess cases of 
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meningitis and cerebral malaria identified during the Phase 3 trial were causally related to the 

RTS,S/AS01 vaccination. 

To respond to these outstanding questions, WHO recommended that pilot implementations using the 4-

dose schedule, with rigorous evaluation be conducted, and that the pilot should include sufficiently 

large populations of children 5-17 months of age in 3-5 distinct epidemiological settings in sub-Saharan 

Africa in moderate to high transmission settings. The Malaria Vaccine Implementation Program (MVIP) 

was therefore conceived, designed and initiated to support delivery of RTS,S/AS01 through routine 

immunization programmes, and the collection of evidence on safety, impact, and operational feasibility 

in routine use.  

MVIP and Malaria Vaccine Pilot Evaluation (MVPE) 

The MVIP has three objectives:  

1. To further characterize vaccine safety in the context of a routine immunization programme, with 

special attention to the safety signals observed in the Phase 3 trial (meningitis, cerebral malaria, 

excess mortality in girls compared to boys).  

2. To evaluate the vaccine’s impact on severe malaria and all-cause mortality; and  

3. To assess the programmatic feasibility of delivering the recommended four-dose schedule, 

including new immunization contacts, in the context of routine health service delivery.  

A Framework for WHO recommendation on RTS,S/AS01 malaria vaccine (Framework), endorsed by SAGE 

and MPAG in 2019, lays out how data from the MVIP will inform WHO guidance. The Framework 

endorses a step-wise approach to anticipate how and when data collected through the MVIP can inform 

WHO recommendations on use of RTS,S/AS01 beyond the pilots. The aim of the step-wise approach is to 

ensure a recommendation is made as soon as the risk-benefit of the vaccine can be established with the 

necessary level of confidence, such that the vaccine would not be unnecessarily withheld from countries 

in need, if it is found to be safe and beneficial. Thus, a WHO recommendation can be made if and when 

concerns regarding the safety signals are satisfactorily resolved, and severe malaria or mortality are 

assessed as consistent with a beneficial impact of the vaccine. Noting that data from studies conducted 

since 2015 show that children living in areas of perennial moderate to high malaria transmission benefit 

from 3 or 4 doses of the vaccine, and that attaining high coverage of new vaccines, particularly in the 

second year of life takes time, the Framework clarified that a recommendation was not predicated on 

attaining high coverage, including high coverage with the 4th vaccine dose. 

An evaluation protocol and statistical analysis plan were developed and reviewed by external experts 

and are publicly available. The MVIP is coordinated by WHO in close collaboration with ministries of 

health (MoH) in the three participating countries - Ghana, Kenya, Malawi - and a range of in-country and 

international partners. The MoH of the pilot countries have introduced the RTS,S/AS01 vaccine through 

their childhood immunization services using routine vaccine introduction strategies and methods. In-

country research partners are leading the evaluation of the RTS,S/AS01 vaccine pilot implementation, 

planned over 4 years. Within the pilot region in each country, districts or similar areas were randomized 

to introduce the vaccine in 2019, or to delay introduction until a decision is reached about safety and 

effectiveness. The areas where introduction was delayed serve as comparison areas for the purpose of 
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the evaluation. The scale of the introduction and duration of the evaluation was chosen in order to be 

able to measure the impact of vaccine introduction on child survival. Delivery of RTS,S/AS01 in each 

country is being monitored by the EPI programme, and uptake of the vaccine is being assessed 

independently through household surveys, conducted about 18 months and 30 months after 

introduction of the malaria vaccine. Surveillance for severe malaria and other conditions is being 

conducted through sentinel hospitals where diagnostic procedures have been strengthened, and 

surveillance for mortality has been established in the community throughout the implementation and 

comparison areas. Mortality surveillance aimed to build on, and substantially expand, existing vital 

registration systems. Hospital and mortality surveillance started in each country when the malaria 

vaccine was introduced or shortly afterwards. 

Safety: Through April 2021, 24 months of data after the MVIP started, sufficient data had accrued to 

evaluate safety concerns in a primary analysis. Based on the analyses of these data, the MVIP Data 

Safety and Monitoring Board (DSMB) concluded that the safety signals seen in the Phase 3 clinical trial 

(2009 – 2014) were not seen in the pilot implementation. The MVPE results showed no evidence of an 

excess of meningitis, cerebral malaria, or gender-specific mortality comparing age-eligible children living 

in implementation areas with those in the comparison areas. Additionally, based on data reviewed from 

the national pharmacovigilance (PV) programmes and ongoing GSK Phase 4 studies, the DSMB did not 

find evidence of new conditions that warrant closer safety tracking. Notably, the safety signals seen in 

the Phase 3 trial have also not been observed in the pooled safety data from Phase 2 trials of RTS,S/AS[1]  

in the trial of seasonal use of RTS,S/AS01 with or without seasonal malaria chemoprevention[2],nor in a 

soon to be published trial on fractional dose of RTS,S/AS01 (Personal communication, Christian 

Ockenhouse, MD, PATH). The African Advisory Committee on Vaccine Safety (AACVS), the Global 

Advisory Committee on Vaccine Safety (GACVS), and the RTS,S SAGE/MPAG Working Group (referred to 

hereafter as Working Group) agreed with the DSMB conclusions. 

Impact: The DSMB concluded that the MVPE findings demonstrated effectiveness of RTS,S/AS01 vaccine 

against severe malaria, with a 30% reduction in severe malaria, and a 21% reduction in hospitalization 

with malaria parasitemia, both of which were statistically significant.  

As anticipated, the results from the pilot evaluation through April 2021 were insufficiently powered to 

detect an effect on mortality. Nonetheless, a non-statistically significant reduction in all-cause mortality 

(excluding accidents/trauma) was also seen with a size of effect consistent with expected impact. The 

Working Group agreed with the DSMB conclusions. 

Feasibility: The primary decisions regarding a broader recommendation for RTS,S/AS01 are to be based 

primarily on safety and impact considerations, however, the available feasibility data are encouraging. 

This assessment was based on the following observations:  

Despite RTS,S/AS01 being a new vaccine delivered through EPI and requiring an expanded schedule, 

reasonably high coverage of the first three doses was achieved in all three pilot countries. This was 

achieved in a relatively short time period and in the context of substantial challenges to the health 

system due to the COVID-19 pandemic. While it is too early to assess fourth dose coverage, preliminary 

information suggests drop-out rates between dose 3 and dose 4 have been around 19-30% in Malawi 
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and Ghana (after 9-10 months of implementation). Insufficient time has passed since 4th dose 

introduction to assess drop-out rates in Kenya. 

Malaria vaccine introduction did not have an impact on the uptake of routine vaccinations, nor did it 

have an impact on health care seeking behaviours for febrile illness, use of insecticide-treated nets 

(ITNs), or other child health activities such as deworming.  

In the midline household surveys, malaria vaccine uptake was 69-75% among children who had not used 

an ITN in the previous night, indicating the vaccine reaches children who may have lower access to, and 

lower use of, other malaria prevention measures. Introduction of the vaccine ensured that access to at 

least one malaria prevention tool (ITNs or vaccine) was expanded substantially. 

Based on qualitative studies conducted as part of the MVIP, care givers and health care providers 

generally had positive attitudes towards the vaccine. Further work is required to improve community 

sensitization and engagement; to work with health care providers on guidance around provision of 

missed or off-schedule doses and to reduce missed opportunities for vaccination (including other EPI 

vaccines); and to assure proper data recording tools are available.  

Estimates on cost of RTS,S/AS01 delivery during the pilot were comparable to costs of HPV vaccine pilot 

implementation, and interim cost estimates show that the resources needed to delivery RTS,S/AS01 may 

be generally comparable with those for other new vaccines.  

Additional data that have become available on RTS,S/AS01 since Phase 3 trial completion and the 

SAGE/MPAG recommendation for pilot implementation studies 

Long-term follow-up of Phase 3 trial: 6-7 years follow-up of a subset of Phase 3 trial study participants 

showed that during the period following RTS,S/AS01 vaccination, the incidence of severe malaria 

declined with age in children in both vaccinated and unvaccinated groups. Although there was no 

evidence of continued vaccine efficacy against severe malaria during the additional three years of 

follow-up, neither was there evidence of increased susceptibility (age shift to older children). Over the 

entire 6-7 year period, vaccine efficacy against severe malaria was significantly positive for children 

receiving 4 doses in both age categories, and for those receiving 3 doses in the 6-12 week age group. 

Thus, children in areas with moderate to high perennial malaria transmission who received 3 or 4 doses 

of RTS,S/AS01 benefitted for at least 7 years after vaccination, and did not have an excess risk of clinical 

or severe malaria. Noting these results, MPAG assessed that these data provided further reassurance on 

the potential impact of an age shift effect in immunized children and reinforced the safety profile of the 

vaccine. 

Seasonal use of RTS,S/AS01: The high initial efficacy over 4-6 months, after the primary RTS,S/AS01 

regimen, as observed in the Phase 3 trial has stimulated interest in consideration of use of RTS,S/AS01 in 

areas of highly seasonal malaria transmission. The proposed strategy would be to deliver a primary 3 

dose regimen in young children (5-17 months) immediately prior to the onset of the 4-6 month 

transmission season. Subsequent booster doses could then be delivered to these children annually, 

again just prior to the transmission season, to provide additional protection during this period of 

greatest risk. 
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To evaluate a seasonal vaccination strategy, an individually-randomized, controlled trial was conducted 

in young children (5-17 months) in Burkina Faso and Mali to assess whether vaccination with the malaria 

vaccine RTS,S/AS01 was non-inferior to seasonal malaria chemoprevention (SMC) with monthly 

amodiaquine plus sulfadoxine-pyrimethamine in preventing uncomplicated malaria and/or whether the 

interventions combined were superior to either alone in preventing uncomplicated malaria and severe 

malaria-related outcomes. Over 6000 children were enrolled starting in early 2017. The incidence of 

uncomplicated clinical malaria in the SMC and RTS,S/AS01 groups were similar – The hazard ratio (HR) 

comparing RTS,S/AS01 to SMC was 0.92, (95% confidence interval (CI): 0.84, 1.01), which excluded the 

pre-specified non-inferiority margin of 1.20, indicating that administration of RTS,S/AS01E was non-

inferior to chemoprevention in preventing uncomplicated malaria. However, the combination of the 

vaccine and SMC was significantly better than either SMV alone or RTS/AS01 alone – the protective 

efficacy of the combination as compared with chemoprevention alone was 63% (95% CI, 58 to 67) 

against clinical malaria, 70% (95% CI, 42 to 85) against hospital admission with severe malaria, and 73% 

(95% CI, 3 to 93) against death from malaria.  

The safety signals observed in the Phase 3 trial between 2009 and 2014 were not seen in this trial. 

Additionally, no other serious adverse events were assessed by the investigator to be related to 

vaccination. Eight cases of clinically suspected meningitis occurred: four in the chemoprevention alone, 

three in the RTS,S/AS01 alone, and one in the combined group. These were investigated by lumbar 

puncture, but none had proven meningitis. There was no evidence of differential mortality or hospital 

admissions in girls compared to boys who received RTS,S/AS01. In this large study, seasonally targeted 

RTS,S/AS01 was safe and non-inferior to SMC in preventing uncomplicated malaria. In addition, the 

combination of these interventions was associated with substantially lower incidence of uncomplicated 

malaria, severe malaria, and death from malaria. 

Modelled public health impact and cost-effectiveness estimates 

Both the Swiss TPH and Imperial College models predict a positive public health impact of the 

introduction of RTS,S/AS01 in settings with PfPr2-10 between 10% and 50% over a 15-year time horizon, 

which is consistent with previously published estimates. Compared with the previous 2015 analysis, the 

cost per case and DALY averted have slightly increased due to the inclusion of more comprehensive 

information on cost of delivery, but estimates remain consistent with the cost per DALY averted for 

other vaccines in a broad range of LMICs and predict the vaccine to be cost-effective compared with 

standard norms and thresholds (e.g. well below the annual gross domestic product).   

Analyses indicate that delivery of RTS,S/AS01 is cost-effective in areas of moderate or high malaria 

transmission where delivery is through routine EPI programmes or through seasonal delivery where 

malaria is highly seasonal, at an assumed cost per vaccine dose of US$ 5. Both trial and modelling results 

indicate RTS,S vaccination would be a cost-effective addition to existing SMC programmes.  

Conclusions and recommendations for SAGE/MPAG consideration  

The RTS,S SAGE/MPAG Working Group recommends that RTS,S/AS01 should be provided at a 

minimum of 4 doses to reduce malaria disease and burden in children from 5 months of age living in 

countries in sub-Saharan Africa with moderate to high malaria transmission. The RTS,S/AS01 vaccine 
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has an acceptable safety profile, and its introduction results in a significant reduction in severe malaria, 

an acceptable surrogate indicator for the likely impact on mortality. The Working Group notes that the 

vaccine provides substantial added protection against malaria illness and death even when provided in 

addition to a package of existing interventions which are known to reduce the malaria burden. The 

introduction of a vaccine at this time would come when progress in recent years has stalled in malaria 

control in Africa, when our current tools are threatened by drug and insecticide resistance, and when 

malaria remains a primary cause of illness and death in African children, with more than 260 000 child 

deaths from malaria annually. 

In areas of moderate to high, perennial malaria transmission, the vaccine should be provided as a 3-dose 

primary series, starting from around 5 months of age and with a minimal interval between doses of 4 

weeks. For children who are delayed in receiving their first dose, vaccination should be started before 18 

months of age. A fourth dose should be given between about 12 and 18 months after the 3rd dose (i.e., 

at around 18 months to 2 years of age), however there can be flexibility to optimize delivery. The 

minimal interval between the 3rd and the 4th dose should be 4 weeks.  

In areas with highly seasonal malaria or areas with perennial malaria transmission with seasonal peaks, 

the RTS,S SAGE/MPAG Working Group recommends that consideration should be given to the option of 

providing the RTS,S/AS01 vaccine seasonally, with potential 5-dose strategies including:  

1. For all children under 5 years of age who have already completed the 3-dose primary series 

through routine administration, provide annual dose(s) just prior to the peak transmission 

season, or 

2. For all children 5-17 months of age, give the 3-dose primary series monthly as a “campaign” just 

prior to the peak transmission season and then in subsequent years provide an annual dose just 

prior to peak seasons.  

The RTS,S SAGE/MPAG Working Group makes this recommendation for possible 5-dose seasonal malaria 

vaccination strategies based on available data. The Working Group understands that this trial is 

continuing with additional doses provided to children up until the age of 5 years, and final results will 

contribute evidence on vaccine efficacy beyond 5 doses. The Working Group also notes that providing 

the first dose from 5 months of age may limit opportunities for integration with the delivery of other 

vaccines and/or for protection of children slightly younger (i.e., 4 months).    

The Working Group notes that the careful and intentional monitoring for the safety signals seen in the 

Phase 3 trial, through quality data collection at sentinel hospitals and through community-based 

mortality surveillance, has revealed no evidence that the safety signals observed in the Phase 3 trial 

were causally related to the RTS,S/AS01 vaccine. Thus, the Working Group does not recommend special 

mechanisms be put in place to look for these signals during expansion of vaccine use or adoption by 

other countries.  

WHO should lead the development of a Framework to guide where the initial limited doses of a malaria 

vaccine should be allocated, through a transparent process that incorporates input by key parties, with 

appropriate representation and consultation. This Framework should include dimensions of market 
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dynamics, learning from experience, scientific evidence for high impact, implementation considerations, 

and social values, including fairness, and equity. 

The MVIP should continue as previously planned for an additional two years to 1) measure the impact of 

the introduction of RTS,S/AS01 on mortality; and 2) measure the added benefit of the fourth dose (the 

Working Group noted that in the Phase 3 clinical trial, the impact on severe malaria was only seen 

among children who had received 4 doses of the vaccine but there was impact on clinical malaria among 

children who received only 3 doses, though lower than that observed on children who had received 4 

doses). Data collection on severe malaria and safety endpoints should continue. Any revisions or 

modifications concerning the recommendation for the fourth dose can be made at the end of the pilots.  
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2 Introduction 

In September 2015, the Strategic Advisory Group of Experts (SAGE) and the Malaria Policy Advisory 

Committee (MPAC, now termed MPAG for Malaria Program Advisory Group) convened to consider the 

evidence available for a WHO recommendation on the use of the RTS,S/AS01 malaria vaccine. At that 

time, the available evidence was summarized in a background paper prepared by the Joint Technical 

Expert Group (JTEG) on malaria vaccines [3]. 

Based on this evidence review, WHO published its position on the RTS,S/AS01 vaccine in January 2016 
[4]. Data tables reporting details on immunogenicity, efficacy, and safety are in the JTEG background 

paper. The key summary points from the WHO position paper were:  

• Malaria remains a major cause of morbidity and mortality, particularly in sub-Saharan Africa, 

and despite considerable scale-up of life-saving interventions, malaria transmission, morbidity 

and mortality remain high in many endemic settings. 

• Prevention needs to be strengthened still further and new tools are needed, including a malaria 

vaccine. 

• Based on the Phase 3 trial results over 4 years of follow-up, among children 5-17 months of age 

at the time of first vaccination who were given a fourth dose 18 months after the primary series, 

RTS,S/AS01 was noted to be immunogenic, and to have moderate protective efficacy against 

clinical malaria (39%), severe malaria (31.5%), and malaria-related hospitalizations (37.2%). 

• Vaccine efficacy was reasonably high over the first 6 months following completion of the initial 3 

monthly doses (67.6%) but waned over time to essentially zero in the last six-month interval at 

trial’s end, which occurred a median of 48 months after the 3rd dose. At six months following the 

4th dose, vaccine efficacy was 42.9%; thus, the 4th dose did extend the period of protective 

efficacy but did not restore efficacy to the same level seen after the initial vaccine series, likely 

due to the acquisition of partial immunity from natural infection in the comparison group.   

• The vaccine was generally well tolerated. Fever was the most frequently reported symptom; 

febrile convulsions were significantly more frequent after any of the initial vaccinations or after 

the fourth dose compared to the control group.  

• Safety signals were noted without established causal relationship with vaccination (noting that 

these findings could be due to chance) including:  

o an excess of meningitis in the RTS,S/AS01 group compared to the control group among 

the 5-17 month age-group only, although these were not associated with any specific 

etiology or temporal pattern related to vaccination, lacked consistency across sites (64% 

of cases were from 2 study sites of 11 – both outside of the meningitis belt); the 

imbalance was not seen in infants first vaccinated at 6-12 weeks of age; and the outlier 

seemed to be an exceptionally low number of cases in the control group, where a single 

case of meningitis was captured during a median of 48 months of follow-up.  
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o a higher number of cerebral malaria cases (identified post-hoc) compared to the control 

group among the 5-17 month age-group only.  

o In a post-hoc analysis, an excess of deaths from all causes among vaccinated girls 

compared to unvaccinated girls, but not in vaccinated boys compared to unvaccinated 

boys. 

Mathematical models suggested implementation of RTS,S/AS01 at high coverage in moderate to high 

endemicity settings would be associated with substantial public health impact, averting 200-700 deaths 

per 100 000 vaccinees in a 4-dose schedule, and preventing 10-28% of all malaria deaths in children 

aged < 5 years. 

In cost-effectiveness models, a 4-dose schedule was estimated to cost US$ 87 per DALY averted 

(assuming US$ 5 vaccine cost per dose in moderate to high endemic settings), consistent with cost per 

DALY averted for other vaccines in a broad range of developing countries.  

In summarizing the balance between benefits and harms[3], WHO noted that RTS,S AS01 had been 

shown to protect against clinical and severe malaria, with unknown benefits against malaria-related or 

all-cause mortality, which the Phase 3 trial was not designed to measure. Identified risks included febrile 

convulsions following vaccination. A significant risk difference was also observed for meningitis 

following vaccination, but the causal relationship remained uncertain, with no clear causality model -the 

excess in meningitis cases in vaccinated children was seen only in the older age category (5-17 months 

at first vaccination), and not the younger age-category; there was no temporal relationship with 

vaccination, with cases occurring more than 1000 days after first vaccine dose; clustering of meningitis 

cases occurred by site, with 64% of cases from only 2 of the 11 sites; and, there was inconsistency in 

etiology, with cases of bacterial, mycobacterial, viral, and those with no pathogen isolated. It was also 

unclear if the imbalance of cerebral malaria cases (in the setting of reduced severe malaria, of which 

cerebral malaria is a subset), or the excess mortality in vaccinated girls seen in the trial were due to the 

vaccine, or were more likely chance findings. None of the safety signals were seen in the pooled safety 

analysis from Phase 2 trials[1] (N ~ 2000, Vekemans et al). Overall, the benefits of the vaccine 

administered to 5–17-month-old children were assumed to outweigh the risks for a 4-dose schedule; 

however, in children who received 3 doses, there was an initial reduction in severe malaria, but this was 

balanced by an increase in severe malaria around 18 months after the initial vaccine course. Therefore, 

an important outstanding question was whether it was operationally feasible to reach children at high 

coverage with a 4-dose schedule, (with the 4th dose provided around 2 years of age); and consequently, 

the extent to which the protection demonstrated in children aged 5 - 17 months in the Phase 3 trial 

could be replicated in the context of routine health systems.  

To evaluate these outstanding questions, in January 2016 WHO recommended that pilot 

implementations with rigorous evaluation be conducted using the 4-dose schedule, and that this pilot 

should include sufficiently large populations of children 5-17 months of age in 3-5 distinct 

epidemiological settings in sub-Saharan Africa in moderate to high transmission settings. It was also 

recommended that the pilot implementations should be phased designs conducted in the context of 

ongoing high coverage of other proven malaria control measures, including long-lasting insecticide 

treated nets, access to quality diagnosis and treatment, and seasonal malaria chemoprevention where 
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appropriate, and be of sufficient duration. The Malaria Vaccine Implementation Program (MVIP) was 

therefore conceived, designed and initiated to support delivery of RTS,S/AS01 through routine 

immunization programs by the MoH in the participating countries, and the collection of evidence on 

operational feasibility, impact, and safety in routine use.  

In October 2017, the MVIP Programme Advisory Group (PAG) was formed to oversee technical aspects 

of the MVIP. Specifically, the PAG’s role is two-fold: to provide technical advice and recommendations to 

WHO on issues concerning the design and implementation of the MVIP; and, in its role as the RTS,S 

SAGE/MPAG Working Group (hereafter referred to as Working Group), to review the evidence, as it 

becomes available, including but not limited to the MVIP, on the balance of benefits and risks of 

RTS,S/AS01 and to consolidate the feedback into a report to SAGE and MPAG with recommendations on 

potential wider scale use of the vaccine in sub-Saharan Africa. 

Beginning in July 2018 , WHO convened a working group to develop a Framework for WHO 

Recommendation on RTS,S/AS01 vaccine (hereafter referred to as the Framework) that was 

subsequently endorsed by SAGE and MPAG[5]. The Framework describes the stepwise approach for how 

and when data collected through the MVIP can inform WHO recommendations on use of the vaccine 

beyond the pilot countries. The Framework aims to ensure a recommendation is made as soon as the 

risk-benefit of the vaccine can be established with the necessary level of confidence, such that provision 

of the vaccine would not be unnecessarily delayed from countries in need, if it is found to be beneficial. 

Accordingly, a WHO recommendation could be made if and when: i) concerns regarding the safety 

signals observed in the Phase 3 trial (related to meningitis, cerebral malaria, and gender-specific 

mortality) have been satisfactorily resolved, and by demonstrating either the absence of a risk of an 

important size of adverse effects during the RTS,S/AS01 pilot implementation or assessment of a 

positive risk-benefit profile despite adverse events; and ii) severe malaria or mortality data trends have 

been assessed as being consistent with a beneficial impact of the vaccine. Furthermore, the Framework 

clarifies that a recommendation for broader use would not be predicated on attaining high coverage, 

including high coverage of the fourth dose (Annex 1). Based on assumptions across the MVIP countries 

with respect to the expected rate of accumulating events and vaccine introduction timings, such data on 

safety and impact trends were expected to be available approximately 24 months after RTS,S/AS01 

vaccine introduction in the MVIP. 

This report summarizes information available from the MVIP after 24 months of vaccine introduction, 

including the primary outcome measures from the Malaria Vaccine Pilot Evaluation (MVPE) on safety 

and impact on severe malaria. In addition, this report also summarizes information on RTS,S/AS01 from 

sources other than the MVIP that have become available since the 2015 JTEG report , including a study 

of 7-year follow-up of a subset of children from the Phase 3 trial, the impact of seasonal use of 

RTS,S/AS01 with and without seasonal malaria chemoprevention (SMC) and efficacy and safety data 

from RTS,S/AS01 fractional dose regimens. The report concludes with the Working Group’s assessment 

and summary of key recommendations on RTS,S/AS01 vaccine use for consideration by SAGE/MPAG.  
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3 Background 

3.1 Epidemiology and disease burden of malaria  

Based on 2019 data, WHO estimated that approximately 229 million cases and 409 000 deaths per year 

were attributable to malaria, with 94% of these deaths occurring in sub-Saharan Africa, and nearly all of 

the remaining occurring in South-East Asia, the Indian subcontinent and South America[6]. Most malaria 

deaths in Africa occur in children younger than 5 years. Adults who grew up in malaria endemic areas 

since childhood and remain resident in such areas acquire a degree of protective immunity are thus 

generally not at risk of death or severe malaria. Infants and young children in malaria-endemic countries 

in Africa typically experience several clinical episodes of malaria before they acquire partial immunity, 

which in older childhood protects against severe and fatal malaria. The immunity to uncomplicated 

clinical malaria is acquired more gradually during childhood. Malaria exerts an enormous toll on 

endemic country economies; data on malaria and gross domestic product (GDP) from 180 countries 

between 2000 and 2017 shows that each 10% reduction in malaria incidence is associated with an 

average rise of 0.3% in GDP per capita and faster GDP growth[7].  

In most African countries substantial malaria-control efforts have been implemented, including the 

widespread deployment of long-lasting insecticide-treated bed-nets (LLIN), the use of indoor residual 

spraying of insecticide in some settings, chemoprevention strategies for certain high-risk groups such as 

pregnant women or young children living in areas of highly seasonal malaria transmission, and prompt 

diagnosis and treatment using quality assured rapid diagnostic tests (RDTs) and artemisinin-combination 

therapies (ACTs). In many settings, these measures have substantially reduced the annual incidence 

rates of new malaria cases; between 2000 and 2015, global malaria case incidence declined by 27%. 

Globally, an estimated 1.5 billion malaria cases and 7.6 million malaria deaths have been averted in the 

period 2000–2019. Most of the cases (82%) and deaths (94%) averted were in the WHO African Region, 

followed by the WHO South-East Asia Region (cases 10% and deaths 3%). While economic development 

and other factors may also have played a role in reducing the malaria burden, much of the decrease is 

likely attributable to large scale deployment of highly cost-effective interventions supported by an over 

10-fold increase in financing for malaria control over the last 10-15 years. 

However, between 2015 and 2019 the annual case incidence decreased by less than 2%, indicating a 

slowing of the rate of decline since 2015[5]. This levelling off of incidence (in some countries an increase 

occurred) has been attributed mainly to the stalling of progress in several countries with moderate or 

high transmission. As a result, 2020 milestones for reductions in malaria morbidity and mortality as laid 

out per the Global Technical Strategy were not achieved[8]. WHO and RBM subsequently launched the 

high burden to high impact (HBHI) country-led approach[9], as a mechanism to support the 11 highest 

burden countries to get back on track to achieve the GTS 2025 milestones.  

Malaria parasite transmission in Africa may occur throughout the year or be strongly seasonal, 

determined largely by rainfall patterns. Transmission intensity generally is related to the vector man 

biting rate and vector survival, which is strongly influenced by temperature and humidity, as well as 

coverage with vector control measures. Because of variations in climatic factors, the availability of 

vector breeding sites, and differences in access to prevention and control measures, malaria parasite 
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transmission may be quite heterogeneous within a country. For example, in areas of western Kenya 

malaria transmission is very high, and malaria contributes substantially to childhood mortality, whereas 

in some other parts of Kenya there is currently little or no malaria parasite transmission. Over the last 

decade the number of areas with such intense transmission has decreased considerably, mainly due to 

scaled up malaria control measures. 

Malaria remains a primary cause of childhood morbidity and mortality in sub-Saharan Africa. The clinical 

presentation, course, and frequency of episodes of clinical malaria may vary, depending on the age of 

the individual (Figure 1), and the intensity and seasonality of malaria parasite transmission. Morbidity 

due to Plasmodium falciparum infection can range from a non-specific mild febrile illness, to fulminant 

and life-threatening disease characterized by obtundation and coma, or respiratory distress, or severe 

anaemia or a shock syndrome requiring immediate parenteral treatment, blood transfusions, fluid 

therapy and supportive measures, often in combination.  

The distribution of clinical manifestations varies by age as a function of transmission intensity (Figure 2). 

Repeated exposure results in acquired protection, developing first against severe malaria, then against 

illness with malaria, and, much more slowly, against parasitaemia without apparent symptoms. In 

settings when transmission is seasonal or perennial, some clinical manifestations of malaria, such as 

cerebral malaria, occur more frequently in older children. In contrast, severe life-threatening anaemia 

tends to occur in younger age-groups and is more prevalent in settings where malaria parasite 

transmission is intense and year-round[10]. In children and non-immune adults, the clinical picture can 

change rapidly over 1-2 days, from an illness that appears to be relatively mild to a life-threatening 

disease. Obstacles to access to quality care can result in delayed treatment and death, underscoring the 

importance of prevention. 

 

Figure 1: Relation between age and malaria severity in an area of moderate transmission intensity. From 

White et al. 2014[11]. 
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Figure 2: Relationship of severe falciparum malaria manifestations to age at different levels of malaria 

transmission From White et al. 2018[11]. 

3.2 Malaria parasites and pathogenesis  

Four species of the Plasmodium protozoan parasite have been identified which account for most human 

infections (P. falciparum, P. vivax, P. ovale, P. malariae) and which do not have an animal reservoir. A 

fifth, P. knowlesi, infects long tailed macaques and zoonotic transmission to humans occurs in some 

parts of South-east Asia. P. falciparum accounts for more than 90% of all malaria-attributable cases and 

deaths. P. vivax accounts for much of the remaining disease burden and is the dominant Plasmodium 

species in many areas outside of sub-Saharan Africa. Human infection with the malaria parasite is 

established following the injection of the sporozoite form of the parasite by female anopheline 

mosquitoes. The parasite develops in the liver over 5-10 days and then emerges and enters the 

bloodstream and infects red blood cells. Subsequent cycles of replication, emergence, destruction of red 

blood cells and re-infection of more red blood cells causes symptoms, including fever. Morbidity and 

mortality from malaria may arise from a variety of causes including sequestration of infected red blood 

cells, severe anaemia due to red blood cell dysregulation and lysis, inflammation-related brain 

pathology, lactic acidosis, and a general shock- like syndrome with hypotension, hypoglycaemia and 

poor tissue perfusion. Vaccine development efforts have focused on P. falciparum and, to a lesser 

extent, on P. vivax (an overview of malaria vaccine targets and the malaria vaccine pipeline is provided 

in Annex 2).[12] 

3.3 Immune response to malaria infection  

After repeated exposure to P. falciparum malaria infections, individuals acquire a significantly reduced 

risk of developing serious illness or dying from subsequent infections. This acquisition of immunity 

through natural exposure occurs first to severe malaria and death, and then more slowly to milder 

clinical features of malaria such as fever. Although immunity to patent parasitaemia (detectable by 

microscopy) does occur by adulthood after many exposures, sub-patent infections of very low parasite 

density may still occur which can be detected by molecular techniques such as PCR. It is remains unclear 

whether or not complete (sterile) immunity is acquired by some individuals after repeated infections. 
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The development of protection against severe disease following repeated natural malaria infections, 

along with an increased understanding of immune mechanisms of protection, both contributed to the 

development of an effective malaria vaccine. 

3.4 Other malaria prevention and control measures  

As noted earlier, major gains in morbidity and mortality reduction have been achieved over the last 20 

years with the improvements in malaria control and enhanced coverage with and access to prevention 

and treatment services. Vector control tools are critical components of prevention – principally use of 

long-lasting insecticide treated nets (LLINs) or deployment of indoor residual spraying (IRS) of houses 

with insecticide. LLINs have been shown to cause a reduction in childhood mortality in randomized 

controlled trials, and a Cochrane Review estimated 50% efficacy of ITNs against uncomplicated malaria 

episodes and 17% efficacy of ITNs against all-cause under five mortality (compared to no nets) in areas 

of high transmission[13]. IRS can be associated with marked reductions in malaria parasite transmission. 

In some countries IRS and ITNs are deployed together, while in others IRS is largely reserved for 

response to epidemics. Globally, the percentage of the populations at risk protected by IRS in malaria 

endemic countries declined from 5% in 2010 to 2% in 2019[6]. reflecting some of the challenges of 

effectively deploying and maintaining IRS. The WHO African Region has the highest proportion of the 

population at risk protected by IRS: in 2019, this proportion was 5.7%.  

Antimalarial drugs to prevent malaria - chemoprevention – is also used in high-risk groups such as 

pregnant women, infants, and young children. For endemic countries in Africa, WHO recommends 

intermittent preventive treatment of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP), 

delivered at each scheduled ANC visit after the first trimester. In 2019, among 33 reporting countries, 

62% of pregnant women received at least one dose of SP; only 34% received the target of three or more 

doses.  

Seasonal malaria chemoprevention (SMC), recommended for children living in areas of highly seasonal 

transmission, is defined as the intermittent administration of full treatment courses of an antimalarial 

medicine to children aged 3-59 months during the malaria season (typically monthly during the 

transmission season) to prevent malarial illness with the objective of maintaining therapeutic 

antimalarial drug concentrations in the blood throughout the period of greatest malarial risk. In clinical 

trials, conducted in areas of highly seasonal transmission (where the majority of malaria cases occurred 

over a 4 month period), SMC reduced incidence of malaria (including severe malaria) by 75%[14]. In 2019, 

13 countries in the Sahel region were implementing SMC and reached nearly 22 million children[6]. A 

programmatic evaluation in seven west African countries showed that during the high transmission 

period, implementation of SMC was associated with reductions 42-57% in the number of malaria deaths 

in hospital, and 26-41% in confirmed outpatient malaria cases[15].  

Intermittent preventive treatment in infants (IPTi) with SP is also recommended by WHO but has not 

been widely implemented. IPTi is defined as the administration of a full course of an effective 

antimalarial treatment at specified time points to infants at risk of malaria, regardless of whether they 

are parasitaemic. In clinical trials, IPTi with SP delivered through EPI provided an overall protection 
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during the first year of life of 30% against clinical malaria, 21% against anaemia, 38% against hospital 

admissions associated with malaria parasitaemia, and 23% against all cause hospital admissions[16].  

Diagnosis with a rapid diagnostic test (RDT) or microscopy and treatment of laboratory confirmed 

malaria with artemisinin-based combination therapy (ACTs) are mainstays of malaria case management. 

In 2019, based on recent household surveys, the rate of diagnosis (by finger or heel prick) among 

children aged under 5 years with fever for whom care was sought 38%; among children who sought 

care, the proportion who were treated with an ACT was 81%, suggesting that many children received 

ACTs without parasitological diagnosis. An equity analysis of fever prevalence and treatment seeking at 

subnational level showed that, although in most countries children in poorer households had a higher 

prevalence of fever in the 2 weeks before the survey, treatment seeking was higher in febrile children 

from wealthier households[6]. 

Although current malaria prevention and control tools remain generally effective, there are limitations, 

particularly with respect to prevention. Many well documented situations exist where intense 

transmission of malaria parasites persists at unacceptably high levels even with good coverage with ITNs 

or IRS[17]. IPTi has not been widely adopted. SMC is limited to deployment in highly seasonal areas in 

west Africa. Moreover, in most areas where SMC is now deployed, malaria remains the main cause of 

death and hospitalization in young children[6].  

There are also significant biological threats on the horizon. Increasing physiological resistance of 

Anopheles mosquitoes to insecticides is recognized as a major threat that requires an urgent and 

coordinated response[18]. Antimalarial drug resistance has been and continues to be an ongoing global 

challenge for all malaria programs[19]. The emergence of malaria parasites that do not express the HRP-2 

marker that is detected by the most widely used diagnostic testing platforms threatens the viability of 

inexpensive rapid diagnostic tools[20]. 

Malaria is associated with considerable heterogeneity geographically and over time. Within any malaria 

endemic country, it is not unusual that the intensity of transmission and the associated burden of 

disease vary considerably due to climate, socioeconomic development, urbanization, health system as 

well other factors. Over time, parts of a country could also change from one level of endemicity to 

another due to changes in the determinants, especially as coverage and use of interventions impact on 

transmission and burden of disease. This heterogeneity requires a targeted response and a choice of 

interventions based on data and local (subnational) information. This is essential for the development 

and monitoring of prioritized malaria control and elimination programmes, based on (i) stratification, of 

malaria risk and approaches to service provision , (ii) development of an optimal national strategic plan 

which that defines the packages of interventions needed to optimize malaria control and elimination in 

a country; (iii) informing rational prioritization to maximize impact when the resources are insufficient to 

provide the optimal packages; (iv) monitoring the impact of the deployed intervention packages[21].  

As noted previously, after steady reductions in malaria morbidity and mortality between 2000 and 2015, 

recent progress has stalled, and the 2020 malaria morbidity and mortality GTS targets were not 

achieved. A revitalization effort, called “High burden to high impact”, was launched in 2018 by WHO, the 

RBM partnership and countries with a high malaria burden[9]. This approach focuses attention on how to 

get back on track: garnering political will to reduce the toll of malaria; using strategic information to 
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drive impact; developing better guidance, policies and strategies; and improving coordination of support 

for national malaria responses. In this context of stalled progress along with both limited efficacy and 

biological threats to current prevention approaches, a malaria vaccine would be a valuable 

complementary tool.   
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4 Malaria Vaccine Implementation Programme - Overview  

4.1 Rationale  

The Malaria Vaccine Implementation Programme (MVIP) was conceived, designed and initiated to act on 

the 2016 WHO recommendation to pilot the RTS,S/AS01 malaria vaccine in routine immunization 

programmes. The MVIP has three objectives:  

1. To further characterize vaccine safety in the context of a routine immunization programme, with 

special attention to the safety signals observed in the Phase 3 trial.  

2. To evaluate the vaccine’s impact on severe malaria and all-cause mortality; and  

3. To assess the programmatic feasibility of delivering the recommended four-dose schedule, 

including new immunization contacts, in the context of routine health service delivery.  

The evidence generated on these outstanding questions is expected to inform a WHO recommendation 

on broader use of the vaccine in sub-Saharan Africa.  

An evaluation protocol and statistical analysis plan were developed and reviewed by external experts, 

and are publicly available. They both provide additional detail to the material presented in this section. 

The MVIP is coordinated by WHO in close collaboration with ministries of health in participating 

countries and a range of in-country and international partners. WHO is working with PATH and GSK on 

the MVIP through a collaboration agreement. PATH provides technical and project management support 

and is leading studies on health care utilization and the economics of vaccine implementation. GSK is 

donating up to 10 million doses of RTS,S/AS01 vaccine for use in the pilot and is leading additional 

studies to continue monitoring the vaccine’s safety and effectiveness in routine use. UNICEF is 

supporting the forecasting and deployment of the donated vaccines to pilot countries. The MoH of the 

pilot countries have introduced the RTS,S/AS01 vaccine using routine vaccine introduction strategies and 

programmes. In-country research partners are leading the evaluation of the RTS,S/AS01 vaccine pilot 

implementation. 

4.2 Country selection 

WHO launched a public call for expressions of interest for participation in the MVIP from the ministries 

of health (MoHs) in sub-Saharan Africa in December 2015. Ten countries, all classified as low or lower-

middle income per World Bank definition, submitted written expressions of interest. A country selection 

process from January to April 2016 included criteria such as demonstrated engagement and interest 

from MoHs; presence of functional immunization and malaria control programmes as evidenced by 

DTP3 and MCV1 coverage, and LLIN usage; high all-cause mortality in the planned regions of the pilots, 

with high malaria transmission, consistent with a large proportion of malaria related childhood deaths in 

such settings; presence of at least one highly capable sentinel hospital per region to facilitate the 

collection of high quality data on meningitis and cerebral malaria; and national pharmacovigilance (PV) 

readiness. Prior participation in the RTS,S/AS01 Phase 3 trial was also considered favourably. Based on 

these criteria, Kenya, Ghana and Malawi were invited to participate in the MVIP; following this, the MoH 

of each country then selected the subnational pilot areas. Each country has a track record of 
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strengthening malaria and immunization programmes, as well as experience introducing new vaccines, 

and links with immunization and malaria research infrastructures for the evaluation components.  

4.3 Regulatory review  

The European Medicine Agency (EMA) Committee for Medicinal Products for Human Use (CHMP) issued 

a positive scientific opinion for RTS,S/AS01 in July 2015 under the Article 58 procedure for an indication 

of active immunization of children aged 6 weeks up to 17 months against malaria caused by Plasmodium 

falciparum and against hepatitis B, concluding that the benefits of the vaccine outweigh its risk[22]. The 

Article 58 procedure allows the EMA to assess the quality, safety and efficacy of a product intended 

exclusively for use outside the European Union (EU), but which is manufactured in an EU member state, 

to address a disease recognized by the World Health Organization (WHO) as of major public health 

interest. This assessment requires medicinal products to meet the same standards as those intended for 

use in the EU[22]. Formal annual reviews have been conducted by EMA based on GSK submission of 

Periodic Safety Update Reports, and the positive scientific opinion has been maintained since 2015[22]. 

Regulators from Ghana, Kenya and Malawi agreed during a February 2017 African Vaccines Regulatory 

Forum (AVAREF) meeting on a pathway and strategy for joint regulatory review with support from the 

EMA. By May 2017, the national regulatory authorities (NRAs) from the three pilot countries authorized 

RTS,S/AS01 for use in pilot areas. 

4.4 Key questions on safety, impact, and feasibility  

The following key questions are being evaluated in groups of children, eligible to receive RTS,S/AS01 

vaccine, residing in the RTS,S/AS01 implementation and comparison areas. 

Safety: 

• Does the introduction of routine RTS,S/AS01 vaccination result in an increased rate of meningitis 

and/or cerebral malaria in communities where the vaccine is introduced? 

• Does the introduction of RTS,S/AS01 have a different effect on all-cause mortality for boys and 

girls? Does RTS,S/AS01 increase mortality in girls? 

• What is the frequency and profile of RTS,S/AS01 reported AEFI? 

Impact: 

• Is there any reduction in all-cause mortality following the introduction of the routine delivery of 

RTS,S/AS01? 

• By how much does the routine delivery of RTS,S/AS01 vaccine reduce the incidence of hospital 

admission with severe malaria? 

Feasibility: 

• What coverage is achieved with RTS,S/AS01 (including the fourth dose in the second or third 

year of life) and how timely are the doses? 

• What is the coverage and timeliness of recommended EPI vaccines and does it change with 

RTS,S/AS01 introduction? 
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• What is the coverage and utilization of other recommended malaria prevention and control 

measures, including ITN and IRS, and does it change with RTS,S/AS01 introduction? 

• Do treatment seeking behaviours for febrile children, use of malaria prevention measures, and 

EPI vaccination coverage change with the introduction of RTS,S/AS01? 

• What strategies help to achieve optimal coverage of the fourth dose? 

• Does the introduction of additional contacts between 5-9 months of age influence vaccine 

programme drop-out rates and the number of fully vaccinated children? 

• Does the introduction of RTS,S/AS01 alter the coverage of other key childhood interventions, 

including Vitamin A supplementation? 
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5 Malaria Vaccine Implementation Programme (MVIP) - Design, 

Implementation, and Evaluation Methods 

5.1 Overview of design 

The MVIP evaluation is being conducted in the context of the early, limited deployment of the 

RTS,S/AS01 vaccine through the routine health systems. Vaccine implementation is expected to 

continue beyond the evaluation period, with the progressive roll out beyond the pilot areas if there are 

no significant safety signals or concerns about the feasibility of deploying the vaccine.  

A master protocol was developed by WHO for revision and adaptation to local country contexts, and 

was the basis of country-specific protocols. The protocols received ethical approval by the WHO Ethical 

Review Board and the Institutional Review Boards of the pilot countries.  The protocols describe the 

MVIP evaluation, which has been designed on the basis of approximately 60 clusters per country, evenly 

split between implementation and comparison areas, with each cluster contributing approximately 

4,000 children per year to the pilot evaluation. The detailed master protocol is publicly available at 

clinicaltrials.gov[23]. clusters per country, evenly split between implementation and comparison areas, 

with each cluster contributing approximately 4,000 children per year to the pilot evaluation. This 

detailed protocol is publicly available[23]. 

The MVPE uses a cluster-randomized design, with some areas (e.g., Districts, Sub-counties), referred to 

as “areas”, introducing RTS,S/AS01 at the beginning of the programme and other areas, without 

RTS,S/AS01, acting as comparison. The division of areas into implementation or comparison areas was 

randomized to enable the MVPE pilot implementation programme to generate the strongest possible 

evidence on the impact and safety of the vaccine by limiting potential biases and providing a 

contemporaneous comparison group allowing for statistical inferences to be made. Randomized 

introduction was also seen as a fair way to select areas to receive the RTS,S/AS01 vaccine during the 

initial period of implementation in which delivery of the new vaccine is being piloted. Areas were 

randomly assigned as implementation or comparator, taking into account the capacity of hospitals and 

health facilities within the areas; malaria transmission (as reflected by the P falciparum prevalence in 

children aged 2-10 years modelled to the cluster level, divided into terciles); and geographic location 

(such as county/region) and population size (divided in terciles). A constrained randomization procedure 

was used to ensure that the vaccination and comparison areas were balanced for these characteristics, 

which could be associated with the incidence of the outcome measures. 

Areas were defined according to the size of the birth cohort, aiming for an annual birth cohort of 4,000 

children. Identical monitoring systems were established in both implementation and comparison areas to 

record impact and safety outcomes.  

Figure 3 illustrates the MVIP areas and location of sentinel hospitals in each of the three pilot countries.  
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Figure 3: Maps indicating the Malaria Vaccine Implementation Programme areas in Malawi, Kenya, and 
Ghana.  
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Figure 3 presents an illustrative overview of study timing and activities to generate data to evaluate 

safety, impact, and feasibility. Surveillance will be maintained in children aged 1-59 months throughout 

the pilot. This allows for an assessment of the effects of vaccine introduction in the age groups of 

children eligible to receive RTS,S/AS01, while the data for children too young or old to be eligible for the 

vaccine provide information about background rates of outcomes in the same cluster.  

 

Figure 3: Timeline for evidence generation and review 

5.2 Routine implementation of the RTS,S/AS01 vaccine 

Ministries of health in each country are delivering the malaria vaccine through their national 

immunization programmes in the selected areas. National malaria control programmes are ensuring 

that existing WHO-recommended prevention tools, such as long-lasting insecticidal nets (LLINs) and 

artemisinin-based combination therapies (ACTs), continue to be deployed on a wide scale. There is a 

compilation of key milestones in the development of the Malaria Vaccine Implementation Programme 

that include country-specific stakeholder engagement and preparations for vaccine introduction[24]. 

The administration of the four doses of RTS,S/AS01 are integrated within the EPI schedules. Based on 

the WHO recommendations, the respective EPI Programmes identified the best target age for children 

to receive each dose of RTS,S/AS01, given the existing routine immunization schedule. Ghana and Kenya 

provide the four doses at 6, 7, 9, and 24 months of age. Malawi opted for a different schedule with the 

four doses given at 5, 6, 7, and 22 months of age, in an effort to administer the primary vaccination 

series- and additional protection against malaria- as early as possible (Figure 4). 
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1/ The upper part of the figure reflects Ghana’s vaccination schedule, the lower part other child health interventions 

Figure 4: Integration of RTS,S/AS01 malaria vaccine into the childhood immunization schedule  

Ahead of the vaccine launches, all three countries implemented the typical preparatory activities for a 

new vaccine introduction, in line with the respective RTS,S/AS01 New Vaccine Introduction Plan 

developed by MOH. Key activities included development of training materials for health workers and of 

information, education and communication (IEC) materials; adaptation, printing and distribution of 

revised routine monitoring and reporting tools for use in facilities; distribution of vaccines and injection 

supplies; cascade-manner trainings for health officials and health care workers; and information, 

communication and social mobilization activities. 

Among the key messages reinforced during trainings of health workers and engagements with 

caregivers and communities are the reasons for pilot introductions; the vaccination schedule; that the 

RTS,S/AS01 malaria vaccine does not prevent all malaria episodes and that it is therefore important to 

continue to use other methods to protect children from getting malaria. Other prevention methods 

include sleeping under an insecticide treated net every night and throughout the night and, in some 

areas, allowing homes to be sprayed with insecticide during spraying periods. Also, a child with fever 

should be taken to a health facility immediately for malaria testing and appropriate treatment if 

necessary. Examples of how this message is being conveyed through the countries’ communication 

materials are shown in Figure 6. 
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5.3 Evaluation methods 

5.3.1 Case definitions  

The case definitions used for the MVPE are provided in the Statistical Analysis Plan[25].They include 

detailed definitions for meningitis (probable, and confirmed); malaria (severe, and cerebral, a subset of 

severe); malaria associated anaemia (any, severe), hospital admissions (all cause, malaria related, non-

malaria related); deaths (all cause, all cause excluding injuries, malaria associated in hospital), 

transfusions, and febrile convulsions.  

     

 

 

Figure 5: Extracts from countries’ 
communication materials, developed 
under the leadership of the MOH, 
highlighting the complementarity of 
RTS,S/AS01 with other malaria control 
interventions.  
From top to bottom: Ghana Flip Chart; 
Kenya Flyer; Malawi Flyer and Key 
Facts Booklet 
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5.3.2 Safety      

The MVIP was designed to address the 3 safety signals, meningitis, cerebral malaria, and an excess in 

female mortality compared with male mortality, observed during the Phase 3 trial, following on 

SAGE/MPAG recommendations from 2015.   

Data for the safety evaluation in the MVPE was captured through four complementary systems: 1) 

sentinel hospital surveillance, established specifically to address the safety signals of meningitis and 

cerebral malaria, 2) community morality surveillance, established to measure impact on mortality, 

including gender- specific mortality; 3) the GSK Phase 4 studies, which follows a cohort of 45000 children 

as part of a post-authorization safety study; and 4) routine pharmacovigilance by the respective MoH, to 

detect rare adverse events following immunization (AEFI). A detailed description of methods used to 

capture safety data are found in Section 10 of the MVPE protocol[23]. A Data Safety Monitoring Board 

(DSMB) meets quarterly and has been monitoring data from the MVPE, the GSK Phase 4 study, and the 

routine pharmacovigilance systems of the 3 pilot countries. 

5.3.2.1 MVPE sentinel hospital surveillance  

A detailed description of sentinel hospital surveillance is provided in the MVPE protocol, Section 10. In 

brief, 18 sentinel hospitals were identified across the three countries, serving RTS,S/AS01 introduction 

and comparison areas. Each hospital had a catchment area with an annual birth cohort of approximately 

4,000 children in each cluster in its catchment areas. Hence, a total of at least 48 000 children in 

implementation areas and the same number in comparison areas contributed to the hospital-based 

evaluation of safety across the programme. These data were complemented by data generated by the 

GSK Phase 4 study (up to 6 hospitals in areas implementing and 6 in areas not implementing RTS,S/AS01, 

serving an area with a total annual birth cohort of approximately 24 000 children). 

Children admitted to hospital aged 1 to 59 months were included in the evaluation. This enabled the 

documentation of critical events in children who are vaccinated near the beginning of the programme. 

Additionally, events in children too young or old to receive RTS,S/AS01 provide information about 

underlying rates in the same cluster which is used in the statistical analysis (see 5.3.2.2). 

Sentinel hospitals in the MVPE were selected that: a) had a catchment area comprising areas which 

implemented RTS,S/AS01 or that was a comparator area; or b) served catchment areas some of which 

implemented RTS,S/AS01 and others which served comparator areas; or c) had available a vaccine 

registry which could be linked to inpatient data. Selection criteria also included: a catchment area which 

includes approximately 4,000 infants from the MVPE area; a functional system of case note recording for 

patients on the paediatric ward; a track record of regular reporting of routine data (inpatient and 

vaccination clinic data) to the district health team; and demonstrable experience of lumbar punctures 

on children with signs of neurological illness. A restricted randomization procedure was used to balance 

apportionment between implementation and comparison areas of the limited number of hospitals (1-3) 

with considerable experience in meningitis surveillance, or diagnosing meningitis or cerebral malaria in a 

research setting. 
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Sentinel hospitals included different types of admitting facilities, offering a range of levels of 

investigation and care to different numbers of children. The number of each type of hospital was 

balanced in implementation and comparison areas such that a similar number of children were admitted 

in each area to each type of facility. A list of characteristics and types of investigation performed at each 

level hospital is provided in Section 10 of the protocol. Hospitalization was defined as spending at least 

one night at a sentinel health facility or having been admitted and dying within the first 24 hours of 

admission. 

Hospital-based surveillance systematically documented admissions to the paediatric ward in order to 

capture information on impact (malaria-specific mortality, severe malaria) and safety (changes in the 

hospital-based incidence rates of meningitis, cerebral malaria, febrile convulsions, other illnesses, all-

cause and malaria-specific mortality. Relevant demographic, vaccination and clinical data were captured 

in a CRF on all children under 5 years of age admitted to the paediatric wards of sentinel hospitals. 

Consolidated, quality assured, inpatient surveillance systems were supported by evaluation partners in 

each country with minimum standards assured to enable systematic, standardized clinical and 

laboratory assessment and management of all admissions. Additional detail on demographic and clinical 

data collected; biological sampling and processing; and laboratory analyses conducted are described in 

Section 10 of the MVPE protocol. 

5.3.2.2 MVPE sentinel hospital surveillance: Statistical methods 

The statistical methods used for analysis of the sentinel hospital data are presented in detail in the 

MVPE statistical analysis plan (SAP)[25] and the MVPE statistical report (Annex 2: Malaria vaccine targets 

and pipeline  Annex 3). The analysis followed a pre-defined analysis plan that has been published, and is

available at https://clinicaltrials.gov/ct2/show/NCT03806465[25]. The original statistical analysis plan had 

only minor amendments. Of note, the analyses were powered only for pooled analysis across the three 

countries.).  

In brief, for each outcome of interest, the incidence rate ratio was estimated comparing the incidence 

rate among children eligible to have received the malaria vaccine in regions where the vaccine was 

introduced, with that in the corresponding age groups in comparison areas. The method took advantage 

of the fact that surveillance was maintained for all children between 1 and 59 months of age, including 

both eligible children, and children who were not eligible for vaccination because they were too young 

or were too old when the vaccine was introduced. If the vaccine had no effect, the ratio of the number 

of events in eligible versus non-eligible children would have been the same for implementation and 

comparator areas.  

The ratio of these ratios was an estimate of the incidence rate ratio associated with vaccine 

introduction in the vaccine-eligible age group. Confidence intervals were estimated using standard 

methods. Events were classified as belonging to vaccine-eligible children, or non-eligible children. To 

avoid contamination, children who were too old to be eligible, by up to two months, were excluded 

from 
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analysis, as the vaccine uptake in this group was unknown. For this reason, the total events in eligible 

and non-eligible categories was slightly less than the total number of events for that outcome. 

By using the data for the non-eligible children in each region there was an adjustment for underlying 

differences in disease burden or access to hospital between implementation and comparison regions, in 

so far as these factors would have tended to be highly correlated between different age groups. A 

second advantage was that reliance on population denominators, which are challenging to estimate 

reliably, was avoided when estimating incidence rate ratios.  

The safety outcomes explored whether the unexplained excess cases of meningitis and cerebral malaria, 

and the excess mortality in girls were causally related to the vaccine. The number of events required for 

90% power to detect rate ratios for these safety signals was estimated, if they were of the magnitude 

observed in vaccinated children the Phase 3 trial, after allowing for dilution due to vaccine coverage 

being less than 100%, and allowing for effects of confounding and contamination.  

In the case of meningitis, confounding was possible if RTS,S/AS01 recipients had also received Hib and 

pneumococcal vaccine, which protect against meningitis. To some extent, this could have masked a 

safety signal; however, in practice this was a small effect due to the fact that vaccine-preventable 

serotypes were relatively uncommon causes of meningitis.  

5.3.2.3 MVPE study size and expected number of events 

The meningitis signal in the Phase 3 trial was calculated to equate to a rate ratio 4 to 5 if vaccine 

coverage was 60% to 70% in implementation areas and 5% in comparison areas. The cerebral malaria 

signal would equate to a rate ratio of 1.7 to 2, and the mortality signal in girls to a mortality ratio of 1.4 

to 1.6. (These values were used in the power calculations. More accurate estimates were made 

subsequently, when data on RTS,S/AS01 coverage from the household surveys became available). 

For safety outcomes, it was estimated that 90 cases of meningitis and 400 cases of cerebral malaria, in 

eligible and non-eligible age groups combined, would be required for 90% power, and that 2000 deaths 

in vaccine-eligible ages would allow 90% power to detect a gender interaction. Based on event rates 

observed in the first year of the evaluation, it was anticipated that the required number of events for 

each outcome would have accrued by approximately the same time, at about 24 months after the first 

introduction of the vaccine (April 2021), if data for all three countries were combined. By April 30, 2021, 

there were 134 cases of meningitis, and 572 cases of cerebral malaria.   

5.3.2.4 GSK Phase 4 Study 

A Phase 4 study (EPI-MAL-003) is led by GSK (the RTS,S/AS01 vaccine manufacturer), as part of the risk 

management plan that was developed with the EMA. The Phase 4 studies will continue after the pilots 

are completed and after a potential recommendation for use, with the interim analysis planned for late 

2023 and final analysis planned for late 2025. The Phase 4 studies are designed to: a) assess a potential 

association between vaccination with RTS,S/AS01 and the safety signals observed in the Phase 3 trial; 

and b) assess any potential association between vaccination and other adverse events of special interest 

(Phase 4 AESIs); which include rare potential immune-mediated disorders, and other AEFI leading to 

hospitalization or death (these outcomes were selected as part of a general safety evaluation, and are 

not related to specific prior safety signals); and c) assess vaccine effectiveness.  
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The GSK-led Phase 4 study is conducted in areas that are physically separate from the MVPE but located 

within the MVIP pilot area (Figure 3). It includes an observational cohort study designed to evaluate the 

safety, effectiveness and impact of the RTS,S/AS01 vaccine in routine use, and includes both temporal 

and concurrent comparisons of the occurrence of adverse events 

(including meningitis, AESIs, deaths (overall and by gender) and other AEs leading to hospitalization or 

death) and malaria (including cerebral malaria cases) between vaccinated and unvaccinated subjects 

living in areas with or without the RTS,S/AS01 vaccine. This cohort longitudinal study, or so-called Active 

Surveillance (AS), component of the GSK-sponsored study enrolled approximately 20 000 children at the 

time of routine DTP vaccination before RTS,S/AS01 vaccine introduction as part of the baseline study, 

and enrolled approximately 45 000 children (half living in areas where the RTS,S/AS01 vaccine was 

introduced and half in areas where the vaccine was initially not introduced after RTS,S/AS01 vaccine 

introduction), at the time of routine DTP vaccination, after the introduction of the RTS,S/AS01 vaccine. 

Longitudinal follow-up of enrolled subjects is being conducted by monitoring at both primary and 

secondary health care facilities, and at the community level (10 home visits and continuous monitoring 

of outpatient visits and hospitalizations at all health care facilities). 

5.3.2.5 Detection of Adverse Events Following Immunization (AEFIs) 

Routine pharmacovigilance (PV) is led by the respective Ministries of Health in the pilot countries. This is 

the routine passive surveillance system used to capture and describe AEFI (including pre-specified AESI) 

reported from health practitioners and the general public. Causality is assessed during the investigation 

of individual cases. Routine PV systems have an important role in identifying signals for rare and severe 

adverse events, such as anaphylaxis, when their occurrence follows closely after the time of product 

administration. Such events are generally too uncommon to be captured or accurately quantified during 

product development. PV systems may be subject to under- or over-reporting and reporting biases, 

especially if the events of concern are not temporarily related to vaccination. The routine PV systems in 

the pilot countries were not well-suited to generate sufficiently reliable data to measure the association 

between vaccination and the 3 safety signals identified in the Phase 3 clinical trial -none of which were 

temporally related to vaccination. Furthermore, in resource limited hospitals, meningitis and cerebral 

malaria are often diagnosed based only on clinical signs, without laboratory confirmation, and cases can 

easily be misclassified if systems are not established to support accurate diagnoses. For these reasons, 

the MVIP includes sentinel hospital and community mortality surveillance systems to address the safety 

concerns related to meningitis, cerebral malaria and gender-specific mortality. 

Through the MVIP, routine national PV systems were strengthened in the 3 pilot countries through a 

standardized set of activities. The PV strengthening was the responsibility of the respective ministries of 

health, with support from WHO, as was routine reporting on AEFI and AESI. The strengthened PV 

system was designed to capture any spontaneously reported vaccine-related adverse events, including 

febrile convulsions and rare and unexpected AEFI. AESI were captured through country-specific 

protocols, as agreed with national authorities, as a complement to the detailed information generated 

by GSK’s Phase 4 study. In Ghana, Malawi, and Kenya, AEFI data are regularly reviewed by the MoH and 

those from MVIP areas are presented to the MVIP DSMB at each of their meetings by representatives 

from the NRAs in each MVIP country. 
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5.3.2.6 Limitations 

Sentinel hospitals are a minority of the available hospitals and are usually better performing than other 

health facilities. They may tend to serve more urban-dwelling, and possibly less-poor patients than may 

be typical of the entire population living in the pilot areas. Thus, children presenting to these hospitals 

may under-represent those with poor access, who may also be at greater risk of adverse outcomes. The 

sentinel hospital surveillance may therefore tend to under-estimate rates of severe disease. Such rates 

also depend on distance or ease of access to facility, as well as the availability of alternative health 

facilities for those seeking care. Estimates of rates and rate differences are therefore inevitably context 

specific. 

The primary analyses depend on area of residence (implementation or comparator) of the child, rather 

than individual vaccination status. Nonetheless, identification of vaccination status in admitted children 

is important for secondary or exploratory analyses. In most sentinel hospitals it is likely that vaccination 

data were available only on the child’s health and vaccination card. These cards were modified by the 

EPI programmes in implementation areas to document doses of RTS,S/AS01. Per usual practice, child 

caregivers are encouraged to carry the card to all contacts with the health services. When not available 

at the time of admission, caregivers were encouraged to make the card available before discharge. In 

the absence of the health card, immunization information was collected through verbal recall. However, 

the validity of recall for the new malaria vaccine under different circumstances (household survey, 

hospitalization, verbal autopsy) is unknown.  

5.3.3 Impact  

The primary impact outcomes are hospitalized severe malaria and all-cause mortality in children 

excluding accidents and injuries. 

5.3.3.1 Community based surveillance for mortality 

The population contributing to the impact evaluation surveillance systems includes vaccinated and 

unvaccinated children living in areas of moderate to intense malaria transmission and aged from 1 

month to 59 months. The surveillance period is 46 months, to provide 12 months of surveillance 

activities after children vaccinated during the first year of the programme receive their fourth vaccine 

dose, assuming that the fourth dose is given by age 27 months. A 12 month surveillance period after 

dose 4 brings children to 39 months of age. Data were collected in children aged up to 59 months to 

enable documentation of delayed critical events in children vaccinated at the beginning of the 

programme. Collecting information on children reported to have died between the ages of 1 and 59 

months facilitated operational activities and minimised the risk of excluding relevant events due to 

inaccuracies in initial reporting of age. In addition, the data for those too young or old for RTS,S/AS01 

provides important information about underlying rates of outcomes in the same cluster.    

Because the majority of deaths in many sub-Saharan countries occur in the community, rather than in 

hospitals or health facilities, the evaluation of the impact of RTS,S/AS01 on survival requires the 

development and consolidation of community-based systems to document and report deaths. A cadre 

of village-based reporters (VRs) was trained to identify and document deaths occurring in their village 

and any surrounding area assigned to the VR. Deaths were identified either through (i) door-to-door 
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visits of each household in the VR’s assigned area, or through notification of VRs of any key events by a 

specially developed local network of informants. The MVPE built on relevant existing and developing 

capacities for this vital event monitoring. 

Where possible, existing cadres VRs were trained to document deaths in the target age group. The VRs 

were trained to ensure an understanding of the importance of mortality monitoring and causes of 

death, inquiring about deaths in locally appropriate ways, use of local events calendars to help capture 

critical dates, and where appropriate, vaccine safety principles and AEFI surveillance to contribute to the 

strengthening of routine PV. Verbal autopsies (VA) were conducted after a locally acceptable period of 

time to capture key variables and to identify deaths due to accidents or injury for exclusion from the 

primary analysis on mortality impact. Information was obtained either using the full VA questionnaire, 

or alternatively using a minimal set of questions that included age at death, sex, vaccine status, location 

of normal residence, and whether the death was due to illness or accident/ trauma. 

5.3.3.2 Sentinel hospital surveillance (severe malaria) 

Sentinel hospital surveillance is described the Safety section above (5.3.2.1) and Section 10 of the MVPE 

protocol.   

5.3.3.3 Study size and expected number of events (mortality and severe malaria) 

Details on sample size and power calculations for impact on mortality and severe malaria are presented 

in detail in the Statistical Analysis Plan.  

The final evaluation of vaccine introduction impact on mortality will be available in 2023, after a 

sufficient number of deaths have accrued. To detect a 10% reduction in mortality with 90% power, 

approximately 24000 deaths would be required; currently just over 13,500 deaths have accrued. 

However, the evaluation by 24 months was well powered to detect a gender imbalance in all-cause 

mortality of the magnitude observed in the Phase 3 trial, if it occurred in the pilot implementations, in 

children up to about 2 years of age. 

For severe malaria, a total of about 3000 severe malaria cases (age eligible and non-eligible groups 

combined) were required for 80% power to detect a reduction of 24%, and 4000 cases for 90% power. 

At the time of analysis, 4091 cases of severe malaria had accrued (1406 and 2685 in the age eligible and 

non-age eligible groups respectively).  

5.3.3.4 Limitations  

The lack of routine vital event registration systems poses a challenge to the evaluation of impact on 

survival. Especially in more remote areas, deaths of children may not be reliably notified to either the 

authorities or the village-based reporting system. To address this challenge, supervisory strategies were 

developed and instituted in each of the pilot countries, as were quality assurance measures. Monthly 

performance data review meetings were held with the statistical team, which included a designated 

statistician or data manager from each of the pilot countries, to review the frequency of key variables 

(e.g., number of households visited, number of deaths reported, etc.) and outlying values were 

identified and in-depth discussions held to identify any corrective actions. Attempts were made to 

triangulate data collected through the community-based mortality surveillance systems, including 
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5.3.4 Feasibility 

5.3.4.1 Overview 

A variety of approaches were used to assess the feasibility of delivering RTS,S/AS01 according to the 

recommended schedule. Malaria vaccine coverage is the primary quantitative outcome measure 

representing both programmatic feasibility as well as community and health worker acceptance. The 

coverage, acceptability, and cost of introduction of RTS,S/AS01 was estimated using complementary 

approaches:  

1. Routine, facility-based administrative coverage data, reported monthly.

2. Household surveys (HHS): EPI representative cluster -sample household surveys, conducted

three times during the programme (baseline, midline, and end line)

3. New vaccine post-introduction evaluation (PIE)

4. Health utilization survey (HUS)

5. Cost of delivery study

The two complementary approaches to estimating vaccine coverage, facility based administrative 

coverage and representative cluster- sample household survey, have pros and cons which are discussed 

in more detail in Section 11.1 of the MVPE protocol.  

In addition to coverage estimates, programmatic assessments through WHO’s Post Introduction 

Evaluation (PIE) tool seek to examine programme operations with a view to improving the delivery of 

RTS,S/AS01. The PIE tool has been adapted for the malaria vaccine pilot implementation.  

A longitudinal, qualitative assessment (health utilization survey), included exploration of any behaviour 

change, providing a contextual background for the quantitative estimates. The qualitative assessments 

provided insights as to whether and how behaviours, such as treatment seeking for febrile children, use 

of malaria prevention measures, EPI vaccination, etc., changed with the introduction of RTS,S/AS01. The 

qualitative evaluation complemented the quantitative data gathered during representative household 

cluster surveys.  

Finally, a cost of delivery study was conducted to evaluate the cost of introducing and delivering the 

malaria vaccine in each of the pilot countries from the provider perspective. The costing study did not 

include costs to household in seeking vaccination. 
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through cross-referencing hospital-based deaths from the surveillance hospitals and through 

comparison with estimates from DHS surveys and from DSS data. 

It is possible that children living in comparison areas might be brought for vaccination in areas allocated 

to RTS,S/AS01 implementation (resulting in “contamination”). This could potentially lead to an under-

estimate the impact of the vaccine on all-cause mortality detected at the community level. The level of 

contamination in the pilots was reduced by selecting areas which are as geographically large as possible, 

making it more difficult for people to seek vaccinations outside their own area. Contamination rates 

were able to be estimated through survey data, and analyses were adjusted accordingly (Annex 3).  
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5.3.4.2 Routine administrative coverage 

The EPI programmes in the three implementing countries routinely collect administrative vaccination 

data on vaccines they administer. The programmes, together with national statistics offices, compute 

and determine target vaccination populations. The vaccination data and the target population are used 

in the calculation of coverage rates. Vaccination facilities receive vaccine eligible children, vaccinate 

them and collect data about vaccination and the vaccinees. The data about vaccine coverage are then 

sent to an intermediate level (sub-district/sub-county/district/county) in the reporting pathway for 

consolidation. The intermediate level sends consolidated coverage data to the national level. The 

national level shares relevant data with the MVIP. The MVIP receives monthly coverage data on 

RTS,S/AS01 by dose number. In addition, the MVIP receives monthly coverage data for the 3rd dose of 

pentavalent (DTP-HepB-Hib) vaccine, and for the 1st and 2nd dose of measles-rubella vaccine, from the 

same areas for comparison. 

5.3.4.3 EPI cluster-sample household surveys 

A baseline representative sample household survey was conducted in each country to provide data on 

the prevalence of malaria infection and coverage of EPI vaccines, in both implementation and 

comparator areas before RTS,S/AS01 introduction. Follow-up surveys were conducted at approximately 

18 – 24 (midline) and are planned for 30-36 months (endline) after the start of RTS,S/AS01 vaccination in 

implementation and comparator areas. These surveys estimate the coverage of the standard EPI 

vaccines and, in implementation areas, the coverage of the primary series of RTS,S/AS01 (in the midline 

survey) and of the primary series and the fourth dose of RTS,S/AS01 (in the endline survey). Results from 

the baseline and midline surveys are presented in Section 6.3 of this report.  

The survey methodology is described in detail in Section 11 of the MVPE protocol. In brief, surveys were 

carried out in a sample of households from implementation and comparison areas. Four groups of ~25 

households (survey “clusters” or primary sampling units, PSUs) were selected from each implementation 

and comparison cluster, such that each household in a PSU had an equal probability of being sampled. 

New samples of households were drawn for each survey. Sampling methods were the same as used in 

standardized national surveys (DHS, MIS, MICS) to enhance comparability of the findings. Typically, a 

two-stage cluster design was used but could have been varied or adapted as long as a probability 

sampling approach was used. 

All consenting primary caretakers/mothers of children aged 5-48 months were interviewed, with data 

collected on contextual factors (e.g., use of insecticide-treated nets, socio-economic status, access to 

health facilities) as well as receipt of EPI vaccines and vitamin A. An interview was conducted for each 

eligible child. The second household survey was restricted to children aged 12-23 months, the target 

group for the assessment of coverage of RTS,S/AS01 doses 1-3. The variables included in the feasibility 

analysis were taken from standard household survey questionnaires, and are summarized in Section 11 

of the MVPE protocol.  

Vaccination status was assessed from the child health card. When no health card was available the 

information was solicited from the caregiver and documented as such. Vaccination information 

collected through maternal recall included asking about each vaccine (per country-specific EPI 
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guidelines) and the number of doses, with detailed prompts characterizing the vaccines to enhance the 

quality of the recall. For the midline survey, a sample of children with the health card available was 

selected for an assessment of the reliability of verbal recall to enable the comparison between the 

written record and the verbal recall by the caregiver.  

A sample size of 100 houses per cluster allowed for an estimate of the cluster-specific coverage of 

RTS,S/AS01 to within 10% (i.e., 95% CI from 40 to 60%) using a conservative estimate of 50% coverage 

and a high response rate above 95% in each cluster. Assuming a design effect of 1.5 between clusters, 

the overall precision in RTS,S/AS01 and coverage estimates of other vaccines over the MVIP 

implementation and comparison areas was 2% (i.e., 95%CI 48% to 52%) in each country. The second 

household survey was powered to generate coverage estimates in the RTS,S/AS01 implementation vs. 

comparator areas, rather than in each cluster, to within ±2% of the true value.  

5.3.4.4 Post-Introduction Evaluation (PIE) 

A PIE was anticipated in each pilot country to systematically assess the overall impact of malaria vaccine 

introduction on the existing immunization system, with a focus on identifying positives and challenges 

for implementation, documenting best practices and lessons learned, and developing recommendations 

for improvement. Evaluations are typically conducted across all levels of the health system (national, 

sub-national, health facility), and involve a variety of data collection efforts, including desk reviews of 

relevant reports and plans, observation at vaccination sessions at facilities, and interviews with key 

informants at national, sub-national, and health facility, including clients (mothers/caregivers). Specific 

areas explored are pre-implementation planning and vaccine introduction, training, vaccine coverage, 

cold-chain management, vaccine management, transport and logistics, vaccine wastage, waste 

management and injection safety, monitoring and supervision, adverse events following immunization, 

and advocacy, communication and acceptance.  

Typically, the PIE seeks to capture the status of vaccine implementation 6 to 12 months after the start of 

vaccinations, and to document best practices of its introduction. Due to COVID-19, the PIE for the 

malaria vaccine were postponed in all countries from early 2020 due to travel restrictions and other 

priorities by the MoH. By the time of this report, the PIE had been completed in Malawi in May 2021, 

Kenya in August 2021, and plans are underway to complete in Ghana later in 2021. 

5.3.4.5 Health Utilization Survey (HUS) 

The detailed methods for the HUS are provided in Annex 5. In brief, the HUS generates qualitative 

evidence to provide insight into three broad areas. First, RTS,S/AS01 uptake, mainly through interviews 

with primary child caregivers (PCGs) of children eligible to receive the vaccine, specifically exploring how 

PCGs learn and hear about RTS,S; identify factors that facilitate or obstruct the adoption of RTS,S/AS01 

and adherence to recommended doses; changes in PCGs perceptions, behaviours, and experiences 

related to RTS,S/AS01 over time; how the adoption of RTS,S/AS01 affects malaria prevention and 

treatment-seeking behaviours; and how PCGs’ interactions with the health system and the child’s 

receipt of the vaccine shape RTS,S/AS01 uptake and adherence to recommended doses.  

Second, issues around delivery and integration are explored through interviews with health workers 

administering vaccines, focusing on understanding: provider perceptions about and understanding of 
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RTS,S, including adverse events; how the vaccine is being promoted in communities and in child health 

services; how providers communicate partial protection of RTS,S/AS01 and messages about the four-

dose schedule; challenges and facilitators in the provision of RTS,S/AS01 and integrating its delivery with 

existing EPI services; and how and why providers’ perceptions, attitudes, and experiences related to 

RTS,S/AS01 change over time. Service provider interviews are supplemented with interviews with health 

programme managers and policymakers, focusing on similar areas as well as policy-level and planning 

issues. 

Third, Community reception of RTS,S/AS01 is explored through individual and group interviews with 

various other community groups. Areas explored include: different communication channels through 

which communities learn about RTS,S; what community leaders/members take away from their 

exposure to RTS,S/AS01 messaging and how they, in turn, talk about RTS,S/AS01 and promote or 

discourage uptake; and how and why community leaders’/members’ perceptions and attitudes about 

RTS,S/AS01 change over time  

The HUS uses a longitudinal study design, involving both cohort and cross-sectional samples, to 

understand RTS,S/AS01 introduction and uptake as a process shaped by changing contexts over time. 

There are three data collection rounds planned for the HUS: Round 1 data collection commenced shortly 

following introduction of RTS,S/AS01 dose 1 in targeted communities in 2019; Round 2 data collection 

was completed after initial delivery of dose 3 but prior to delivery of dose 4 and; Round 3 data collection 

follows the delivery of dose 4 and is ongoing as of this report.  

5.3.4.6 Cost of introduction and delivery study 

The cost of introduction and delivery study generated incremental cost estimates of RTS,S/AS01 

introduction and delivery using data on actual activities (for example, planning and coordination, 

procurement and distribution, training, sensitization, social mobilization, service delivery, supervision 

and monitoring) and costs incurred from 2018 through the end of 2020. The study included operational 

cost data collected from representative health facilities (between 24 to 32 facilities) within MVIP areas 

as well as at regional/national levels, in each country. At the time of this report, limited data were 

available to estimate the cost of dose 4 vaccination and cost per fully immunized child (FIC), as the 

vaccine’s schedule and age-eligibility meant that children only began receiving dose 4 at the very end of 

the study period. Under this constraint, dose 4 and FIC unit cost estimates were generated under 

assumed coverage levels. For RTS,S/AS01 doses 1-3, observed coverage during MVIP up until the end of 

2020 were used. Drop-out rates for measles-containing vaccines (MCV) dose 1 to dose 2 for 2019 were 

used to proxy drop-out rates for RTS,S/AS01 dose 3 to dose 4 to derive an estimate for dose 4 coverage 

and provide an indication of the potential cost of delivery by dose. These interim cost estimates will be 

updated in 2022 using more comprehensive data on dose 4 coverage and costs, in order to generate 

cost of delivery by dose and cost per FIC.   
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6 Malaria Vaccine Implementation Programme (MVIP) - Evaluation 

Results 

6.1 Safety results 

Three safety signals were identified in the Phase 3 trial, which were unexplained: an excess of meningitis 

cases in vaccine recipients (rate ratio of 10.5:1), an excess of cerebral malaria cases (rate ratio 2.15:1) 

and, among girls, excess all-cause mortality (rate ratio 2.0), with a mortality ratio (RTS,S/AS01: control) 

that was 2.6 fold greater among girls than for boys.  

In the MVPE, high coverage of the primary three doses of RTS,S/AS01 was achieved in each country (see 

Section 6.3) in Malawi, Ghana and Kenya respectively) and sufficient events observed, from the three 

countries combined, to allow effects of the magnitude observed in the Phase 3 trial to be detected, if 

they occurred, with 90% power in pooled analysis.  

The results below are taken from the MVPE statistical report, which is provided as Annex 3. The 

population contributing to the evaluation of vaccine safety comprises children eligible to have received 

at least one RTS,S/AS01 vaccine dose. 

6.1.1 Sentinel hospital surveillance 

6.1.1.1 Meningitis 

A total of 4,311 suspected cases of meningitis were investigated. Lumbar punctures were performed in 

2,652 (62%) of these patients, and polymerase chain reaction (PCR) analysis of samples of cerebrospinal 

fluid (CSF) was available for 2,249 patients (52%). A total of 51 cases of probable or confirmed 

meningitis (identified based on examination of CSF, or a positive PCR result) were seen in sentinel 

hospitals among age groups of children eligible for the malaria vaccine, 27 from implementation areas 

and 24 from comparison areas. Among the age groups that were not eligible for the malaria vaccine, 

there were 79 probable or confirmed cases, 44 from implementation areas and 35 from comparison 

areas.  

The incidence rate ratio comparing rates of admission with meningitis in implementation and 

comparison areas, among vaccine-eligible children, was 0.81 (95%CI 0.43, 1.55). 

There was therefore no evidence that introduction of the malaria vaccine led to an increase in the 

incidence of hospital admission with meningitis, and there were sufficient cases, and high coverage of 

the vaccine, to detect an excess of the magnitude observed in the Phase 3 trial. 

Of the patients with probable or confirmed meningitis in vaccine-eligible age groups from 

implementation areas, 41% (11/27) had received RTS,S/AS01 vaccine, compared to 53% (2491/4672) of 

all other hospital admissions in this age group from implementation areas (odds ratio, adjusted for 

country and age, 0.73 (95%CI 0.31,1.71). The PCR results showed that only 15% (8/55) samples from 

confirmed cases were of vaccine serotypes preventable by Hib or pneumococcus vaccines (i.e., 

Haemophilus influenzae type b, or vaccine serotypes of Streptococcus pneumoniae).  

Page | 40 

5.1_Malaria

SAGE meeting October 2021 40



Page | 41  

6.1.1.2 Cerebral malaria  

There were 1,405 cases of severe malaria (P. falciparum infection with severe anaemia, or respiratory 

distress, or with impaired consciousness or convulsions but not meeting criteria for meningitis) among 

children who were eligible to have received at least one dose of the malaria vaccine, 558 from 

implementation areas and 847 from comparison areas (Figure 3). Among these, there were 55 cases of 

cerebral malaria (positive for Plasmodium falciparum by rapid diagnostic test or microscopy, with 

impaired consciousness (i.e. a Glasgow coma score <11 or Blantyre coma score <3 or assessed as P or U 

on the AVPU (“Alert, Voice, Pain, Unresponsive”) score, in whom lumbar puncture had been performed 

to exclude cases with probable meningitis), 25 from implementation areas and 30 from comparison 

areas. Among age groups of children not eligible to have received the malaria vaccine, there were 241 

cases of cerebral malaria, 115 from implementation areas and 126 from comparison areas. The 

incidence rate ratio comparing rates of admission to hospital with cerebral malaria in implementation 

areas relative to comparison areas, among children eligible for the malaria vaccine, was 0.77 (95% 0.44, 

1.35). The incidence rate ratio for admission with other forms of severe malaria (excluding cerebral 

malaria) was 0.70 (0.54, 0.89), but there was no evidence that effectiveness differed between cerebral 

malaria and other forms of severe malaria (relative rate ratio 0.94 (0.57, 1.56), and test of interaction (p-

value 0.808).  

When the analysis was broadened to include cases meeting the criteria for cerebral malaria but in whom 

lumbar puncture had not been performed, there was a total of 103 cases in age-groups eligible to have 

received at least one dose of the malaria vaccine, 49 from implementation areas and 54 from 

comparison areas, and there were 455 cases in non-eligible age groups, 230 from implementing areas 

and 225 from comparison areas. The incidence rate ratio comparing rates of admission to hospital with 

cerebral malaria (with the broader case definition) in implementation areas relative to comparison 

areas, among children eligible for the malaria vaccine, was 0.96 (95%CI 0.61, 1.52). Again, there was no 

evidence that impact differed between cerebral malaria and other forms of severe malaria (test of 

interaction p-value 0.470). Similar results were obtained when cerebral malaria was limited to cases 

defined as “U” on the AVPU score.1. Among children eligible to have received the vaccine, 20 of the 

cases from implementation areas and 25 from comparison areas met this stricter criterion, and the 

estimate of the rate ratio was 0.66 (95%CI 0.31, 1.43).  

Therefore, there was no evidence that introduction of the malaria vaccine led to an increase in the 

incidence of hospital admission with cerebral malaria, and there were sufficient cases to detect an 

excess of the magnitude observed in the Phase 3 trial, if it was present.  

Of the patients with cerebral malaria in vaccine-eligible age groups from implementation areas, 47% 

(23/49) had received RTS,S/AS01 vaccine, compared to 53% (2479/4650) of all other admissions in this 

 

1 The AVPU scale (an acronym from "alert, verbal, pain, unresponsive") is a system by which a health care 

professional can measure and record a patient's level of consciousness and is a simplification of the Glasgow Coma 

Scale, used in the two case definitions above 
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age group from implementation areas (odds ratio, adjusted for country and age, 1.03, 95%CI 0.56,1.90; 

the odds ratio among cases meeting the stricter definition requiring an LP, was 1.58, 95%CI 0.66,3.80). 

6.1.1.3 Gender-specific mortality 

Excluding deaths due to injury, among children eligible to have received three doses of RTS,S/AS01, 

there were a total of 2864 deaths reported, 1421 from implementing regions and 1443 from comparison 

regions. In children who were not eligible to have received the vaccine there were 4218 deaths in 

implementing regions and 3874 in comparison regions.  

The mortality ratio in the vaccine-eligible age group between implementing and comparison regions, 

was 0.93 (95%CI 0.84,1.03), a 7% reduction (95%CI -3%,16%). There was no evidence that the mortality 

ratio differed between girls and boys (p 0.343). The mortality ratio in girls was 0.98 and in boys 0.90, 

yielding a relative mortality ratio (girls:boys) of 1.08 (95%CI 0.92,1.28).  

When analysis was extended to children eligible to have received at least one dose of vaccine, similar 

results were obtained (ratio of mortality ratios: 1.08 (95%CI 0.93, 1.25), p value for the interaction 

0.321). Similar results were also obtained when the analysis was repeated for different age groups of 

eligible children (mortality ratio girls:boys, in eligible children under 18 months of age, was 1.10, 95%CI 

0.94, 1.29, and in eligible children aged 18 months and above, 0.95, 95%CI 0.70, 1.31).  

Therefore, there was no evidence that the effect of RTS,S/AS01 introduction on all-cause mortality 

differed between girls and boys in this age group, and there were sufficient deaths to detect an excess 

of the magnitude observed in the phase 3 trial, if it was present.  

Vaccination status of vaccine-eligible children who died in implementation areas was similar in girls and 

boys (58.9% and 57.0% respectively). According to the household surveys in 12-23 month olds, coverage 

of RTS,S/AS01 was 77.6% in girls and 73.0% in boys in Ghana and 75.1% and 70.1% in Malawi.  

6.1.2 Adverse events following immunization 

Based on data reviewed from the national PV programs, the DSMB did not find evidence of new 

conditions that warrant closer safety tracking (Annex 6). In Ghana, Malawi, and Kenya, AEFI data are 

regularly received from the MVIP areas and have been presented to the MVIP DSMB at each of their 

meetings by representatives from the NRAs in each MVIP country.  

Representatives from the Ghana Food and Drugs Authority (GFDA), the Malawi Pharmacy and Medicine 

Regulatory Authority (PMRA) and the Kenya Pharmacy and Poisons Board (PPB) provided updates on 

cumulative AEFI and AESI cases for their representative countries. None of the assessed serious AEFIs 

reported through May 2021 in Kenya and through June 2021 in Ghana were identified as causally 

related to RTS,S/AS01 by the NRAs. In Malawi, the causality assessment has not yet been completed; 

financial support has been made available and the NRA was requested to prioritize this activity.   

At the 27-28 July 2021 MVIP DSMB meeting, the DSMB Chair asked the NRA representatives to indicate 

if, based on the experience to date, they have any safety concerns or adverse events they are 

monitoring for the routine implementation of the RTS,S/AS01 malaria vaccine. Each indicated there are 

no specific concerns and the observations from the safety monitoring thus far have been comparable to 

other vaccines in the EPI schedule for this age range.  
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The DSMB did note that collecting and investigating adverse events following vaccination remains a 

challenge for national PV programs. Most of the reports were generated in the context of the Phase 4 

study or the MVPE, and very few serious events or deaths were investigated. Regarding the target 

minimal reporting threshold of 10 AEFI per 100 000 surviving infants per year (a proxy measure for an 

established national AEFI reporting system), Ghana and Malawi exceeded this threshold, whereas in 

Kenya the reporting ratio has been below this target.  

6.1.3 GSK Phase 4 Study 

At the time of the preparation of this summary, the GSK Phase 4 study data were still in the process of 

data entry and cleaning, so no conclusions can be drawn from those data. An interim analysis of the 

phase 4 studies will be available in 2023, with final analysis in 2025, after a potential WHO 

recommendation for broader RTS,S/AS01. Although not a formal analysis, event monitoring through the 

GSK Phase 4 study, presented to the DSMB on a quarterly basis, has not exposed an apparent excess of 

the safety signals seen in the Phase 3 trial and has not revealed any new safety signals to date.   

Formal annual reviews have been conducted by EMA based on GSK submission of Periodic Safety 

Update Reports, and the positive scientific opinion has been maintained since 2015[22]. 

6.1.4 Interpretation of safety findings  

The DSMB reviewed the MVPE 24-month results (DSMB 24 months review report, Annex 6). They 

concluded that the safety signals seen among 10,306 infants and children who received RTS,S/AS01 in 

the Phase 3 clinical trial of RTS,S/AS01 (2009-2014) were not detected through pharmacovigilance in the 

pilot implementation after 652,673 children received their first dose (and 494,745 their third dose) in 

implementation areas where the vaccine was provided, or among the 9,994 age-eligible children 

admitted to the pilot evaluation sentinel hospitals (4,853 from implementation areas), during the period 

from start of vaccination in 2019 until 30 April 2021 .  

The DSMB concluded that the safety signals seen in the Phase 3 clinical trial (2009 – 2014) were not seen 

in the pilot implementation. The MVPE results showed comparable burden for meningitis, cerebral 

malaria, and gender-specific mortality among age-eligible children living in implementation areas and 

those in the comparison areas. Key data to support this included: 

• Power calculations for the three safety endpoints indicated that the number of endpoints 

accrued was adequate to exclude associations of a similar magnitude to those observed in the 

Phase 3 trial, after accounting for observed levels of vaccine coverage and contamination on 

population-level effects.    

• The results consistently show risk ratios near 1 (i.e., no association) for probable meningitis, 

cerebral malaria, and the vaccine-gender interaction with mortality. In addition, pooled 

estimates were inconsistent with the corresponding risk ratio point estimates (adjusted for 

vaccine exposure) observed in the Phase 3 trial. In other words, the hypotheses were rejected 

that the vaccine was associated with increased risk levels for those three specific safety 

endpoints of a magnitude seen in the Phase 3 trial. 

• The proportion of  patients with meningitis, or cerebral malaria, from implementation areas, 

who had received RTS,SA01 was not greater than that for patients with other conditions, and 
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among the children who died, the proportion of girls who had received RTS,S/AS01 was similar 

to that for boys, reflecting the similar coverage in girls and boys in the household surveys, 

indicating vaccine uptake was not higher in children who presented with the safety signals seen 

in the Phase 3 trial.   

• The real-world setting of the MVIP and generation of an imperfect dataset was acknowledged, 

which is unlike a Phase 3 clinical trial. However, it was noted that the MVIP team and partners 

sought to ensure that as much complete and quality-assured data as possible were available for 

the analyses. The MVIP had continuously responded to feedback from the DSMB and PAG to 

identify and act upon areas for improvement since the beginning of the programme. Any 

deficiencies or missing data are expected to be equally distributed between the RTS,S/AS01 

vaccine-implementation areas and non-implementation areas so as not to bias the analysis.  

• Some limitations were noted, but those did not alter the conclusions regarding safety: 

o Unlike the analyses of the other safety endpoints (deaths among girls and meningitis), the 

cerebral malaria analysis, when a broader definition was used, had an upper confidence limit 

(1.52) closer to the (coverage-adjusted) point estimate of the Phase 3 trial (1.60). The results 

were less certain about the cerebral malaria endpoint because of these numbers, the 

difficulty of diagnosing cerebral malaria given the lack of resources to exclude other causes of 

encephalopathy in the MVPE sentinel hospitals, and the rarity of the outcome. The DSMB 

support plans to strengthen the safety assessment for cerebral malaria through further data 

collection in the MVPE that includes tracking of this endpoint.  

o The challenges with meningitis surveillance were noted, specifically the potential for many 

missed probable and confirmed cases because of variable performance of lumbar punctures 

among suspected cases. However, there is no reason to suspect that the use of lumbar 

puncture in age-eligible children vs age-ineligible children differed between implementation 

and comparison areas, so it is unlikely that under-detection biased the analysis.   

The recently established African Advisory Committee for Vaccine Safety and the well-established Global 

Advisory Group for Vaccine Safety agreed with the DSMB conclusions following their review of the 

DSMB recommendations and MVPE results (Annex 7). 

Following the review of the MVPE results, the MVIP Programme Advisory Group agreed with the DSMB 

conclusions presented to the Programme Advisory Group by the DSMB Chair.  
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6.2 Impact results 

6.2.1 Community based mortality surveillance  

Overall, a total of 13682 deaths 1-59 months of age were reported to March 31, 2021 (deaths in April 

2021 were excluded because verbal autopsies have not all been completed). Of these deaths, 4729 were 

in vaccine-eligible age groups, and 95.5% of these had verbal autopsies completed (or, in the case of 

facility deaths in Malawi, hospital records obtained), and a cause of death (categorized as due to injury, 

or other causes) established for 4280/4729 (90.5%). As noted above, the evaluation was not powered at 

this time point to assess impact of vaccine introduction on overall mortality. Gender-specific mortality 

findings are discussed in Section 6.1.1.3. 

6.2.2 Sentinel hospital surveillance – severe malaria  

Among children eligible to have received all three primary doses of RTS,S/AS01, there were a total of 

1107 admissions with severe malaria (P. falciparum infection with severe anaemia, or respiratory 

distress, or with impaired consciousness or convulsions but not meeting criteria for meningitis), 418 

from implementation areas and 689 from comparison areas. Among children who were not eligible to 

have received any doses of RTS,S/AS01 there were 1313 patients admitted from implementation areas 

and 1390 from comparison areas. The incidence rate ratio comparing incidence of admission with severe 

malaria between implementation and comparison areas was 0.70 (95%CI 0.54, 0.92), a reduction of 30% 

(95%CI 8%, 46%) in the context of overall vaccine coverage during the first two years of vaccine 

introduction of approximately 60-70%. As per Section 6.1.1.2, there was no evidence that effectiveness 

differed between cerebral malaria and other forms of severe malaria.  

Of the severe malaria cases in children eligible for three doses of RTS,S/AS01, a total of 284/1107 

patients had severe malaria anaemia (26%). The incidence rate ratio for this subgroup of severe malaria 

was 0.78 (95%CI 0.55, 1.09), with no evidence that effectiveness differed when compared to that for 

other forms of severe malaria (interaction test p-value 0.529).  

6.2.3 Sentinel hospital surveillance, secondary outcomes measures for impact 

6.2.3.1 Hospital admissions with a positive malaria test  

Patients admitted to sentinel hospitals were routinely tested for malaria infection by RDT or microscopy. 

Out of a total of 27,678 patients admitted, test results were available for 88%. Among children eligible 

to have received three vaccine doses, the number of patients admitted with a positive malaria test was 

2630, 1075 from implementation areas and 1555 from comparison areas. The rate ratio comparing the 

incidence of hospital admission with a positive malaria test between implementation and comparison 

areas was 0.79 (95%CI 0.68, 0.93), a reduction of 21% (95%CI 7,32%). 

6.2.3.2 All cause hospital admissions  

Severe malaria represented 19% of all admissions to sentinel hospitals (with at least one overnight stay) 

in comparison areas, among children who would have been eligible to have received three doses of 

malaria vaccine. In this age group there was a total of 3196 admissions to sentinel hospitals in 

implementation areas and 3569 in comparison areas. The rate ratio comparing the incidence of all-cause 
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hospital admission between implementation and comparison areas, for this age group, was 0.92 (95%CI 

0.83, 1.03), a reduction of 8% (95%CI -3%, 17%).  

6.2.4 Interpretation of impact findings  

The DSMB concluded that the MVPE findings demonstrated effectiveness of RTS,S/AS01 vaccine against 

severe malaria. These conclusions were based on: 

• The number of events accrued were adequate to demonstrate significant benefit for preventing 

severe malaria. For mortality, the number of accrued events had not yet reached the target sample 

size, so the analysis was not yet adequately powered. 

• The pooled analysis indicated that RTS,S/AS01 vaccine significantly reduced the incidence of severe 

malaria in the implementation areas, and hospital admissions with a positive malaria test; a non-

statistically significant reduction in all-cause mortality (excluding accidents/trauma) was also seen. 

As expected, the results were not yet powered to detect an effect on mortality, but the size of effect is 

consistent with expected impact. 

The MVIP Programme Advisory Group agreed with the DSMB conclusions presented by the Chair, 

following their review of the MVPE results.  
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6.3 Feasibility results 

6.3.1 Routine administrative coverage  

As of the end of June 2021, 2 million doses of the RTS,S/AS01 malaria vaccine have been administered 

across Ghana, Kenya and Malawi (see Figure 7). Over 710 000 children have received at least one dose 

of the malaria vaccine, and over 110 000 children have received their fourth and final dose. 

 

Table 1: Vaccine coverage estimates for different time periods according to routine administrative data  

Country  Time period  RTS,S-1 RTS,S-2 RTS,S-3 RTS,S-4 Penta-3 MR-1 MR-2 

Malawi  Since start (Apr 2019 – Jun 2021) 77% 67% 63% 39% 89% 85% n/a 

 2020 annual  (Jan – Dec) 88% 79% 73% 28% 95% 90% n/a 

 2021 first half  (Jan – June) 93% 84% 82% 46% 96% 94% 78% 
         

Ghana Since start (May 2019 – Jun 2021) 70% 67% 65% 38% 91% 85% n/a 

 2020 annual  (Jan – Dec) 71% 67% 66% 30% 92% 85% n/a 

 2021 first half  (Jan – June) 74% 72% 74% 42% 88% 87% 77% 
         

Kenya  Since start (Sept 2019 – Jun 2021) 80% 71% 62% 41% 75% 76% 40% 

 2020 annual  (Jan – Dec) 69% 64% 60% * 72% 73% 39% 

 2021 first half  (Jan – June) 80% 72% 63% * 83% 86% 53% 

Notes: * Considered too early for calculation of meaningful coverage estimate for the 4th dose.  

Penta-3 = 3rd dose of pentavalent (DTP-HepB-Hib) vaccine; MR 1 = 1st dose of measles-rubella vaccine; MR 2 = 2nd 

dose of MR vaccine 

 

Figure 6: Cumulative number of RTS,S administered since start of the programme  
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Demand and uptake of the malaria vaccine has been strong across all three countries despite the 

challenges brought about by the COVID-19 pandemic. While there was variation in performance 

observed, according to administrative data, since start of vaccination, all three countries reached at 

least 70% of their target populations with the first RTS,S/AS01 dose and at least 62% with the third 

RTS,S/AS01 dose (see Table 1). This level of uptake is considered satisfactory and within expectations for 

a new vaccine with a novel schedule, i.e., targeting children as of 5 months (in Malawi) and 6 months 

(Ghana and Kenya) for the first dose.  

Administration of the malaria vaccine as part of the routine immunization system has continued despite 

the challenges and effects of the COVID-19 pandemic. It is notable that Ghana experienced malaria 

vaccine stock-outs at certain health facilities in August 2020 due to delayed shipment of the vaccine, 

which was in part related to COVID-19 and Kenya experienced health worker strikes related to COVID-19 

working conditions in August 2020 and between December 2020 and February 2021, but vaccine uptake 

swiftly recovered once these disruptions were resolved. The ability of the EPI Programmes to maintain 

or improve upon performance, and to quickly recover from COVID-19 related disruptions, is a testament 

to their resilience. It also demonstrates the demand for the vaccine by parents and the acceptance by 

health workers who provide the vaccine.  

MVIP partners have supported MoHs and country-level partners to develop vaccine implementation 

strategies that support timely uptake of the four-dose schedule. The approaches build on efforts to 

clarify age eligibility to reduce drop-out rates between vaccine doses and to encourage catch-up of 

missed vaccinations.  

The following section reviews each country’s performance in more detail and in comparison with the 

third dose of the Pentavalent vaccine protecting against diphtheria, tetanus, pertussis, hepatitis B and 

Haemophilus influenzae type b (Penta-3, given at 14 weeks) and first and second dose of the Measles-

Rubella vaccine (MR1, given at 9 months and MR2 given at 15 or 18 months) for the same target 

population in the same MVIP areas. 

6.3.1.1 RTS,S/AS01 uptake in Malawi 

Malawi introduced the malaria vaccine into its routine immunization programme in select areas of 11 

districts on 23 April 2019. Over 695 000 doses of RTS,S/AS01 have been administered to eligible children 

between start of vaccination and 30 June 2021. Approximately 247,000 children have received the first 

vaccine dose and 44 700 children have completed the 4-dose course. The National Task Force advised 

there be no formal launch event when RTS,S/AS01 vaccination started. Minimal community engagement 

and social mobilization activities began around the time the vaccine was introduced. This ‘silent’ launch 

has likely contributed to low initial uptake. The EPI and partners have conducted further social 

mobilization and community engagement, which has been associated with steadily increasing coverage. 
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By July 2020, just over a year after vaccine introduction, uptake of the first dose of RTS,S reached the 

level of MCV1, and by October 2020 the level of Penta-3 (Figure 8). Coverage reported in the first half of 

2021 remained relatively stable at high levels: 93% coverage of RTS,S/AS01 dose 1, 84% of dose 2, and 

82% of dose 3 based on monthly targets (Table 1). This is improvement compared to already strong 

performance in 2020 when annualized coverage of the first dose was 88%. Measured over the first half 

of 2021, the coverage of RTS,S-1 reached a similar level as MR-1 at 94% and reported slightly below 

Penta-3 at 96% and significantly above MR-2 at 78%. In the same period, the overall drop-out rate from 

first to second dose of RTS,S/AS01 was 10%; the drop-out rate from first to third dose was 12%, 

indicating an improvement compared to the previous year when drop-out rates were over 20%.  

The first children who were 5 months of age at the start of the programme in Malawi in April 2019 were 

age eligible (22 months) for the fourth dose in September 2020. Therefore, as of June 2021, there has 

been approximately ten months of fourth dose administration. During this period, approximately 81% of 

all age-eligible children who received dose 3 have returned for dose 4 (i.e., a drop-out rate of 

approximately 19%). Relatively high drop-out rates continue to be a main area for improvement, 

particularly for the fourth dose. 

6.3.1.2 RTS,S/AS01 uptake in Ghana 

Ghana introduced the malaria vaccine into routine childhood immunization in 42 districts (7 regions) on 

1 May 2019 preceded by a themed community launch event –“Malaria vaccine for additional 

protection.” Over 772 000 doses have been administered to eligible children between start of 

 

Figure 7: Number of doses administered for selected antigens including RTS,S from April 2019 to June 

2021 among MVIP target population, Malawi, administrative data 
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vaccination and 30 June 2021. Almost 261 000 children have received the first vaccine dose and over 49 

000 children have completed the 4-dose course. 

 

Uptake was high in the first month of introduction, likely driven by the MOH guidance to target children 

6 and 7 months of age for the first dose of RTS,S/AS01. There has been a slow but steady increase in the 

number of doses administered per month, with the majority of MVIP regions reaching 60% to 85% of the 

monthly target population with the first dose by mid-2020 (Figure 9). The significant drop in malaria 

vaccine coverage in August 2020—when only around 45% of the monthly target population was reach – 

was due to a delayed international RTS,S vaccine shipment that led to stock-outs in some facilities. 

Stocks were replenished over the course of August and missed children identified for catch up 

immunization activities. Mop-up activities enabled a strong recovery exceeding pre-stock out coverage 

levels by October 2020.  

Coverage in the first half of 2021 across all implementing districts was 74% for the first dose, 72% for the 

second dose and 74% for the third dose (Table 1). Compared to the annualized coverage for 2020, this 

represents a 3% increase in first dose coverage and an 8% increase in third dose coverage. This remains 

below the reported coverage for Penta-3 (88%), MR-1 (87%) and slightly below MR-2 (77%) in the same 

areas during the same time period. During the first half of 2021, the drop-out rate from first to second 

dose of RTS,S/AS01 was 3%; the drop-out rate from first to third dose was 1%, suggesting a high return 

rate of children who were initiated with the malaria vaccine. The first children who were 7 months of 

age at the start of the programme in Ghana in May 2019 were age eligible (24 months) for the fourth 

dose in October 2020. Therefore, as of June 2021, there have been approximately 9 months of fourth 

dose administration. During this period, approximately 70% of all age-eligible children who received 

 

Figure 8: Number of doses administered for selected antigens including RTS,S from May 2019 to June 

2021 among MVIP target population, Ghana, administrative data  
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dose 3 have returned for dose 4 (i.e., a drop-out rate of approximately 30%). Relatively high drop-out 

rates for the fourth dose continue to be a main area for improvement. 

6.3.1.3 RTS,S/AS01 uptake in Kenya 

Kenya introduced the RTS,S/AS01 malaria vaccine into routine childhood immunization in 26 Sub-

Counties with high malaria burden in 8 counties on the 13 September 2019. There was a major launch 

event and subsequent county-level launch events for other participating sub-counties. Over 530 000 

doses have been administered to eligible children in the selected areas between the start of vaccination 

and 30 June 2021. More than 204 000 children have received the first vaccine dose and over 17,300 

children have completed the 4-dose course.  

 

The MOH guidance was to offer the first dose of RTS,S/AS01 to children aged 6 to 12 months at the time 

of the launch. This policy explains the high uptake of the vaccine in the initial months. Within a few 

months following introduction, the coverage of RTS,S-1 reached similar levels as Penta-3, indicating a 

high capacity by the Kenya National Vaccines and Immunization Programme (NVIP) to mobilize 

caregivers to return for a new vaccination visit when the child is 6 months old (Figure 10). Health worker 

strikes in mid-2020 and between December 2020 to February 2021 have led to a considerable drop in 

vaccination rates for all antigens. Full recovery to pre-strike levels and some evidence of catch-up of 

missed children was seen starting in March 2021. 

Coverage in the first half of 2021 across all implementing sub-counties was 80% for the first dose, 72% 

for the second dose and 63% for the third dose (Table 1). Compared to the preceding 6-month period 

(July-December 2020), this represents a 15% increase in first dose coverage and an 8% increase in third 

 

Figure 9: Number of doses administered for selected antigens including RTS,S from September 2019 

to June 2021 among MVIP target population, Kenya, administrative data  
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dose coverage. Coverage of RTS,S-1 has maintained similar levels as Penta-3 since the first few months 

of introduction. In the first half of 2021, the drop-out rate from first to second dose of RTS,S/AS01 was 

10%; the drop-out rate from first to third dose was 22%. Due to the expanded age group (6 to 12 

months old) at the time of vaccine introduction in Kenya, there is a small proportion of children that 

reached the age of 2 years and have returned for the 4th dose of RTS,S, starting in September 2020. The 

first children who were 6 months of age at the start of the programme in September 2019 were age-

eligible for dose 4 when celebrating their 2nd birthday in March 2021. During either observation period 

(September 2020 to June 2021 for older children or March to June 2021 for younger children), the 

estimated drop out during this period was 59%; i.e., approximately 41% of age-eligible children who 

received the third dose of RTS,S/AS01 have returned for their fourth dose.   

6.3.2 Household survey (HHS) 

Highlights of findings of the midline HHS for Ghana, Malawi and Kenya are summarized here.  

Key findings were as follows:  

• Enrolment: In Ghana, Malawi, and Kenya, the number of children 12-23 months enrolled was 

2311, 2568, and 3074 respectively. Of these, 91.1% in Ghana, 88.1% in Malawi and 88.0% in 

Kenya had vaccination cards available and this did not differ significantly between vaccine and 

comparator areas or from baseline.    

• In Malawi, in the survey conducted in March-April 2021 in children 12-23 months of age, who 

were due for their first dose between Sep 2019 and Aug 2020, 72.5% had received their first 

dose of RTS,S/AS01 according to the home-based record (HBR) or caregiver recall, and 62.3% 

had received three doses. The median age at dose 3 was 8.5 months, with 90% of third doses 

received by 13 months of age. 

• In Ghana, the survey in November 2020, assessing uptake in children due for dose 1 between 

June 2019 and May 2020, found 75% of children 12-23 months of age had received the first dose 

and 67% three doses. Among those who received three doses the median age at the time of the 

third dose was 9.7 months and 90% of third doses were received by 13.4 months of age.  

• In Kenya, in the survey conducted in May - July 2021 in children 12-23 months of age, who were 

due for their first dose between October 2019 and November 2020, 78.6% had received their 

first dose of RTS,S/AS01 according to the home-based record (HBR) or caregiver recall, and 

62.3% had received three doses. The median age at dose 3 was 9.7 months, with 90% of third 

doses received by 11 months of age. 

• In Ghana, coverage of the first dose of RTS,S/AS01 (75%) was less than for the first dose of 

measles-containing vaccine (88.3%), indicating that there are missed opportunities for 

RTS,S/AS01 vaccination when children attend for measles vaccine. In Malawi, coverage of the 

first dose of measles-containing vaccine was 79.7%, compared to 72.5% for the first dose of 

RTS,S/AS01 and in Kenya coverage of the first dose of measles-containing vaccine was 90.1%, 

compared to 78.6% for the first dose of RTS,S/AS01. 

• In comparison areas, the survey in Ghana found that 6% of children 12-23 months with an HBR 

had documented receipt of RTS,S/AS01, in Malawi 1.9%, and in Kenya 10.2%. RTS,S/AS01 was 

not provided in comparison areas but children may have visited a facility in a neighbouring area 
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where the vaccine was available, or could have moved to live in a comparator area having 

previously lived and received vaccines in an implementation area.  

• EPI impact: In all countries, there was no impact of RTS,S/AS01 introduction on the uptake of 

other routine childhood vaccines. 

• Use of malaria prevention and control: In all countries, there was no impact on the use of ITNs in 

children following the introduction of the malaria vaccine when comparing the implementation 

versus the comparison areas, and no impact on health seeking behaviour. Seeking treatment for 

fever, getting a diagnostic test, or receiving antimalarials for treatment was comparable 

between baseline and midline survey in Ghana, Malawi, and Kenya, and between 

implementation and comparison areas.  

• Equity: Vaccine coverage was equitable by gender, socioeconomic status, or ITN use. 

• Improved access to malaria control interventions: data from the household surveys (reflecting 

the first 18-20 months of vaccine introduction) show that the availability of the malaria vaccine 

expanded the reach of malaria preventive interventions to vulnerable children. In Ghana 69% of 

children reportedly slept under an ITN the night prior to the survey and 77% had received a first 

dose of RTS,S/AS01. Among children who did not sleep under an ITN, 72% received a first dose 

of the malaria vaccine.  The introduction of the malaria vaccine expanded the percentage of 

children accessing at least one malaria prevention measure – an ITN or the malaria vaccine - 

with coverage increasing from 69% to 91%, while 55% of children benefitted from both an ITN 

and the vaccine. Similar results were observed in Malawi, where ITN use was 67%, vaccine 

coverage was 79%, and among the children who did not sleep under an ITN, 75% were 

vaccinated with the malaria vaccine. The introduction of the malaria vaccine expanded the 

uptake of at least one malaria preventive intervention from 67% of children to 92%, with 54% 

benefiting from both interventions. In Kenya, reported ITN use was very high, at 92%, malaria 

vaccine coverage was 79% and among children who did not sleep under an ITN the prior night, 

69% received the first malaria vaccine dose. The addition of the malaria vaccine resulted in 97% 

of children accessing at least one malaria preventive intervention, with 73% of children 

benefiting from both interventions. 

• Impact of RTS,S/AS01 on other child health activities or indices: Overall, there was no impact on 

the uptake of Vitamin A or anthelminthics (deworming).  

6.3.3 New Vaccine Post-Introduction Evaluation 

At the time of this report, only the PIE results from Malawi were available for inclusion. In general, 

positive findings following the malaria vaccine introduction included improvements in the quality, 

consistency and frequency of supervision. Also noted was an increase in knowledge, detection and 

reporting of adverse events following immunization. Another observation was that the malaria vaccine 

introduction increased the opportunity for health care workers to screen children for any missed vaccine 

doses and provide catch up.  

In Malawi, challenges noted included the need for more involvement of Districts in formulating the 

introduction and implementation plans. In addition, the evaluation found that comprehensive social 

mobilization and community and community engagement was not achieved prior to vaccine 
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introduction. Activities such as orientation of local leaders and engagement of peer-to-peer educators 

were done after the vaccine was already introduced. The delayed social mobilization in Malawi likely 

contributed to poor malaria vaccine uptake in the first few months following introduction. Additionally, 

there was a delay in provision of revised data recording and reporting tools, resulting in the need for 

improvised documents to track malaria vaccine indicators. Overall, the introduction was considered 

successful despite the observed challenges, most of which were addressed during the implementation 

period.  

The Kenya PIE was completed in mid-August 2021, and the Ghana PIE preparations are underway. 

6.3.4 Health Utilization Study 

The Health Utilization Study received human subjects ethics approval from Institutional Review Boards 

within each of the implementing countries and from PATH’s Research Ethics Committee.  At the time of 

this report, two data collection rounds for the Health Utilization Study (HUS) – a qualitative longitudinal 

study-- have been completed and the final round is underway. A report of preliminary findings from 

round 1 (R1) was completed in June 2020. In addition to a cross-country report on findings from the 

Primary Child Caregiver cohort sample (Annex 5), available HUS data include: R1 results, a background 

document summarizing HUS methods and study status, R1 results, and three country-specific reports. In 

this report the focus is on R2 results including: 

• Provider perceptions on RTS,S/AS01 uptake through dose 3, including factors that facilitate or 

threaten receipt of all three doses. 

• Primary care giver (PCG) perceptions about RTS,S, sources of RTS,S/AS01 information, and 

new/or persistent questions and concerns about RTS,S/AS01. 

• Impact of RTS,S/AS01 uptake on malaria treatment seeking and other prevention behaviours. 

• Health provider perceptions of the acceptability and feasibility of providing RTS,S/AS01. 

Primary care givers. The uptake of the RTS,S/AS01 vaccine through the third dose was generally strong, 

with coverage rates among the study cohort comparable to coverage from the household surveys and 

administrative data. Instances of children who had not received any RTS,S/AS01 doses were thought 

typically to be due to early barriers, including initial PCG concerns about the vaccine’s safety or 

confusion about eligibility, resulting in PCGs refusing or delaying initial doses until their children were no 

longer eligible. Instances of children who had received fewer than the expected three doses of RTS,S 

were thought typically to be due to service access barriers or to the PCGs’ personal circumstances. Most 

caregivers expressed their intent to take their children to receive dose 4, and many did so 

enthusiastically. 

Positive attitudes and trust in RTS,S/AS01 among PCG increased substantially between R1 and R2 

interviews, driven mainly by their perception of the health benefits of the vaccine in their own children 

and in the broader community. Early concerns about safety have been replaced by widespread 

perception that adverse events following RTS,S/AS01 immunization (AEFI) are “normal” and similar to 

other vaccines. Fewer threats to RTS,S/AS01 uptake - such as rumours or fears about safety - were 

evident in R2 compared to R1. In the absence of perceived threats around the vaccine, access and 

programmatic barriers (e.g., service access) were more frequently reported in R2. This pattern of access 
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barriers becoming more important in R2 is consistent with the responses given by PCGs as to why their 

children have not received all recommended doses of RTS,S.  

Malaria treatment seeking and other prevention in the context of RTS,S/AS01. PCGs perceived malaria 

to be less frequent or severe because of the vaccine. These impressions were expressed with equal 

frequency by PCGs for RTS,S/AS01-eligible children having had episodes of malaria since receiving 

RTS,S/AS01 vaccinations. RTS,S/AS01 uptake did not seem to interfere with or change existing malaria 

treatment or prevention behaviours at the time of R2 interviews. 

Although caregivers have demonstrated growing knowledge of RTS,S/AS01 and understanding of the 4-

dose schedule across the first two rounds of data collection, some confusion and questions persisted 

around the level and duration of protection conferred by the vaccine. 

At a high-level, these patterns were observed consistently across all three countries. However, cross-

country findings require country-specific contextualization to better call out and understand variations 

across the three countries. For instance, although the data revealed common issues and events that 

could undermine trust in all three countries, there was country-specific contextualization in how these 

issues or events appeared or were interpreted. For example, in Ghana there were issues with 

disinformation (e.g., early rumours); in Malawi, the silent launch resulted in some perceptions of 

inadequate information; and in Kenya, there were service access barriers (e.g., health worker strikes and 

stockouts). Additional detail is provided in country-specific reports.  

Health care providers. In provider feedback on the acceptability and feasibility of providing 

RTS,S/AS01, the vaccine itself was not the subject of questions or challenges, suggesting the antigen 

itself is acceptable to providers. Providers also expressed an increasing perception of the 

effectiveness of the vaccine as they experience a perceived reduction in the number of children 

reporting to their facilities with malaria since the inception of the RTS,S vaccine within the routine 

immunization system. Providers also reported improvements in the community perceptions 

surrounding the vaccine, which they attributed to an increase in health promotion efforts. 

The chief concerns from health providers were around operational challenges faced in introducing and 

delivering RTS,S/AS01. Operational challenges noted included: 1) increased health provider workloads, 

primarily due to additional documentation; 2) lack of adequate training and supportive supervision; 3) 

lack of clarity about eligibility, and how to handle children who had missed doses or presented off-

schedule; 4) lack of community sensitization on key messages through local leaders and influencers; this 

was noted as a limitation during the RTS,S/AS01 launch, and is still seen as a need.  

6.3.5 Cost of introduction and delivery  

The costing analysis estimated both the financial cost, representing the actual financial outlays, and the 

economic costs, including the opportunity cost of existing resources. The incremental non-vaccine cost 

of introducing and delivering a dose of RTS,S/AS01 ranged between US$ 1.20 and $2.50 (financial) and $ 

2.07 and $4.77 (economic) across MVIP countries. The cost of delivery was slightly lower for the first 3 

doses, (range: $0.94 to $1.97 (financial) and $1.71 to $3.86 (economic)). The cost of delivery of the 

fourth dose based on assumed coverage levels ranged between US$ 1.64 and $3.12 (financial), and 
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$2.48 and $5.82 (economic). Considering only the recurring costs, the non-vaccine cost of delivery per 

dose of RTS,S/AS01 ranged between US$ 0.40 and $1.10 (financial) and $0.96 and $2.67 (economic) 

across MVIP countries. The cost per FIC, based on assumed coverage levels, were estimated to be US$ 

8.92 to $10.8 (financial) and $33.71 to $41.65 (economic).  

These interim unit cost estimates are reported under assumed coverage levels for dose 4 and may be 

indicative of the potential costs of delivery by dose and the cost per FIC. Estimates of costs of 

RTS,S/AS01 delivery during the pilot were higher than the cost per dose for other newly introduced 

vaccines such as PCV or Rotavirus at US$ 0.84 (range: $0.48 to $1.38, economic)[26]. However, 

RTS,S/AS01 estimates are comparable to the costs of HPV vaccine pilot implementation[26]. The interim 

cost estimates show that the resources needed to deliver RTS,S/AS01 may be generally comparable with 

other new vaccines. However, comparisons of the current results to findings from the literature should 

be made cautiously, acknowledging that the methods and the delivery strategies are different, and 

these estimates are drawn from ongoing pilot studies rather than a full national introduction. 

6.3.6 Interpretation of feasibility findings 

Although at this time the primary decisions regarding a broader recommendation for RTS,S/AS01 are to 

be based primarily on safety and impact considerations, the available feasibility data are encouraging. 

This assessment is based on the following observations:  

• Despite RTS,S/AS01 being a new vaccine delivered through EPI and requiring an expanded 

schedule, reasonably high coverage of the first three doses was achieved in all three pilot 

countries. This was achieved in a relatively short time period and in the context of substantial 

challenges to the health system due to the COVID-19 pandemic. It is too early to assess fourth 

dose coverage, although preliminary information suggests drop-out rates between dose 3 and 

dose four have been around 19-30%. 

• Malaria vaccine introduction did not have an impact on the uptake of routine vaccinations, nor 

did it have an impact on health care seeking behaviours for febrile illness, use of ITNs, or other 

child health activities such as deworming.  

• Malaria vaccine uptake was 69-75% among children who had not used an ITN in the previous 

night before the survey, suggesting the vaccine was reaching children who may have lower 

access and have lower use of other malaria prevention measures.  

• In general, care givers and health care providers had positive attitudes towards the vaccine. 

Further work is required to improve community sensitization and engagement; work with health 

care providers on guidance around provision of missed or off-schedule doses and reduction of 

missed opportunities for vaccination (including other EPI vaccines); and assure proper data 

recording tools are available.  

• Estimates on cost of RTS,S/AS01 delivery during the pilot were comparable to costs of HPV 

vaccine pilot implementation.   
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7 Review of RTS,S/AS01 Phase 3 trial results (2009 - 2014) 

7.1 History, technical specifications, and previous clinical trial results 

The development history, technical specifications, and information on clinical trials with RTS,S/AS01 

trials preceding the Phase 3 trial are described in detail in the JTEG report “Background paper on the 

RTS,S/AS01 malaria vaccine.” 

7.2 Phase 3 trial - summary of results 

The RTS,S/AS01 trial methods and results have been summarized and published both in peer reviewed 

literature[27] and as summary reports for WHO meetings to consider recommendations (JTEG report). 

The following sections summarize this information briefly; for additional details the original references 

should be consulted. 

RTS,S/AS01 is the first and, to date, only vaccine to show a protective effect against malaria among 

young children in a Phase 3 trial. This multisite trial was conducted over 5 years at 11 sites in seven sub-

Saharan African countries (Burkina Faso, Gabon, Ghana, Kenya, Malawi, Mozambique and the United 

Republic of Tanzania). The trial was conducted in settings with improved access to quality care, high 

coverage and use of LLINs, and there was very low mortality among children enrolled in the trial.  

Vaccine efficacy: When four doses of RTS,S/AS01 were given to children aged 5–17 months at first 

vaccination the vaccine efficacy was 39% (95% CI, 34–43) against clinical malaria and 29% (95% CI, 6–46) 

against severe malaria during a median of 48 months follow-up(according to protocol analysis) (MAL 055 

Phase 3 trial results, Lancet 2015). The vaccine reduced severe malaria anaemia, the most common 

manifestation of severe malaria in moderate to high transmission areas, by 61% (95%CI 27─81) and the 

need for blood transfusions by 29% (95% CI 4─47). Among 5–17-month children who received four 

doses, vaccine efficacy against malaria-related hospitalization was 37% (95%CI 24, 49) during the full 

observation period. The Phase 3 data summarized in the JTEG report and WHO position paper indicate 

that a fourth RTS,S/AS01 dose given 18 months after the third dose provided sustained vaccine efficacy 

against clinical and severe malaria in children aged 5–17 months. This result suggested that three doses 

alone had no effect on the overall incidence of severe malaria, the apparent protective effect in the first 

18 months being balanced by a relative increase in cases in the period from 18 months to the end of the 

trial[3]. 

Impact: Among participants in the 5–17 month age category who received a 3-dose schedule or a 4-dose 

schedule, the estimated numbers of cases of clinical malaria averted by study end (M2.5-SE) were 1363 

(95% CI, 995–1797) and 1774 (95% CI, 1387–2186) per 1000 vaccinated children, respectively. Because 

of the high frequency of malaria in endemic countries, with children suffering many bouts of malaria 

each year, the absolute impact was considerable despite the modest vaccine efficacy[27]. The largest 

numbers of cases averted per 1000 vaccinees were at sites with the greatest disease burden, reaching 

more than 6500 cases averted per 1000 children vaccinated with 4 doses.  

Modelled public health impact and cost-effectiveness: A comparison of four mathematical models 

enabled the assessment of RTS,S/AS01’s potential public health impact and cost-effectiveness[28].This 

was carried out using Phase 3 clinical trial clinical malaria outcome data for the 5–17 month age group 
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with follow-up time of 32 months or longer to generate estimates of cases, deaths, and disability-

adjusted life-years (DALYs) averted over a 15-year period[28]. The models assumed that vaccine 

implementation was added to existing levels of malaria control interventions and treatment. With an 

assumed coverage of 90% for the first 3 doses, with 80% of these individuals receiving the fourth dose 

(72% coverage overall), all models predict a substantial additional public health impact of RTS,S/AS01 in 

settings with PfPR2-10 between 10% and 65%[28]. In these settings, median modelled estimates range 

from 200 to 700 deaths averted per 100 000 children vaccinated with a four-dose schedule, and 10% to 

28% of all malaria deaths averted in vaccinated children aged <5 years. Public health impact and cost-

effectiveness tended to be greater at higher levels of transmission.  

At an assumed vaccine price of US$ 5 per dose and a PfPR2–10 of 10–65%, the models predicted a 

median incremental cost-effectiveness ratio compared with no vaccine of $30 (range 18–211) per 

clinical case averted and $80 (44–279) per DALY averted for the three-dose schedule, and of $25 (16–

222) and $87 (48–244), respectively, for the four-dose schedule. Higher incremental cost-effectiveness 

ratio (ICERs) were estimated at low PfPR2–10 levels. These predictions of RTS,S/AS01 cost-effectiveness 

per DALY averted are positive and comparable with other new vaccines based on mathematical models. 

Estimates for ICERs for clinical cases and DALY’s averted were also calculated for vaccine prices at US$ 2 

and $10 per dose[28]. 

Safety: No fatal adverse events were assessed as causally related to RTS,S/AS01 vaccination. In the 5–17 

month age category, from the first dose to the trial end, serious adverse events (SAEs) were slightly less 

frequent in the RTS,S/AS01 groups than in the control group. In this age group, febrile convulsions were 

an identified risk in RTS,S/AS01 recipients in the 7 days following vaccination, but overall seizures were 

balanced among children who received RTS,S/AS01 and those who received the comparator vaccine 

(possibly due to a reduction in malaria-related seizures). Febrile seizures resolved without long-term 

consequence and are not unique to this vaccine[3]. 

Two safety signals were identified during the trial for which causality has not been established: 

meningitis (any cause) and cerebral malaria. Among 5–17 month olds in the 20 months following the 

first RTS,S/AS01 dose, meningitis was reported in 16 of the 5948 participants in the RTS,S/AS01 group, 

and in 1 of the 2974 participants in the control group, a relative risk of 8.0 (95%CI, 1.1–60.3). From study 

month 21 until trial end, 2 cases of meningitis were reported in the RTS,S/AS01 4-dose group (n=2681), 

3 cases in the 3-dose group (n=2719), and 0 cases in the control group (n=2702). Cases were clustered at 

2 of 11 the study sites, located outside of the meningitis belt (Kombewa, Kenya and Lilongwe, Malawi), 

from which 64% of the meningitis cases in the 5-17 month age group were reported. Of note, there was 

no clustering of cases relative to time of vaccination, and no increase in risk was seen in the younger age 

category. A variety of pathogens, including bacterial and viral, were responsible for the meningitis. In 

addition, there was a remarkably low number of meningitis cases in the comparator group of the older 

age category (1 case over 4 years). In the same age group, in an unplanned subgroup analysis from study 

months 0 to 20, 13 cases of possible cerebral malaria (by expert review) occurred in the combined 3- 

and 4-dose RTS,S/AS01 group compared to 7 in the control group. From study month 21 until trial end, 

there were 7 cerebral malaria cases in the 4-dose RTS,S/AS01 group, 8 cases in the 3-dose RTS,S/AS01 

group, and 2 cases in the control group[3]. 
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A post hoc analysis showed an imbalance in mortality among girls, with about 2-fold higher deaths 

among girls who received RTS,S/AS01 than among girls who received comparator vaccines (p=0.001); 

the ratio of deaths among boys was slightly lower in the RTS,S/AS01 arms versus the control arm. A 

relationship between the RTS,S/AS01 vaccine and these findings has not been established.  

The WHO advisory bodies and EMA concluded that all of these described safety signals may have arisen 

by chance. The signals were not seen in a pooled analysis of 2981 children who received RTS,S/AS01 

during Phase 2 trials[3] nor have the potential meningitis, cerebral malaria or mortality signals been seen 

in the more than 4000 children who received RTS,S/AS01 in two recently completed trial, one to 

evaluate alternative dosing regimens and a second to measure efficacy with annual boosters in highly 

seasonal areas. The signals were not seen in a pooled analysis of 2981 children who received RTS,S/AS01 

during Phase 2 trials[3] nor have the potential meningitis, cerebral malaria or mortality signals been seen 

in the more than 4000 children who received RTS,S/AS01 in two recently completed trial, one to 

evaluate alternative dosing regimens and a second to measure efficacy with annual boosters in highly 

seasonal areas. The pilot evaluations and a Phase 4 study (further explained below) have been designed 

to provide further information. 

7.3 RTS,S/AS01 immunogenicity 

Background information on RTS,S/AS01 immunogenicity is provided in the JTEG report. In the Phase 3 

trial there were very few non-responders to RTS,S/AS01. Anti-CS antibody geometric mean titres (GMTs) 

were highest at one-month post-vaccination, but did not return to the original level with a fourth dose 

(Figure 11).  

 

Figure 11: Anti-CS geometric mean titres in 5–17-month age category (labelled as “children”) and 6–12-week-

old age category (“infants”) in pivotal Phase 3 trial (per-protocol population for immunogenicity). Provided by 

GSK 
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The absolute GMT value was higher in the 5–17-month age group compared to the 6-12 week age group 

at each time point following vaccination, as previously noted in Phase 2 studies. There was site-to-site 

variation in GMTs. In the 5–17-month age category there was no clear correlation between anti-CS IgG 

and protection against disease (Figure 12). 

 

Figure 12: Vaccine efficacy by tertile of anti-CS antibody concentration (ATP population) in 5-17 month age 
category (R3C, 3-dose schedule). Error bars represent 95% confidence interval. t1-3: tertile 1-3 of anti-cs titre 
post vaccination. Provided by GSK on request 

In a modelling analysis of the Phase 3 trial data examining the association of the titres of anti-CS 

antibody with the incidence of clinical malaria, analysis showed: 1) anti CS antibody titres were higher in 

5-17 month olds than in 6-12 weeks olds; 2) immunogenicity of the fourth dose was strongly associated 

with immunogenicity after primary vaccination; 3) anti-CS antibody titres waned according to a biphasic 

exponential distribution , with 5-17 month olds showing a short half-life component (45 days [95% 

credible interval 42-48 days) and a long lived component, 591 days (557-632); 4) after primary 

vaccination, 12% of the response was estimated to be long-lived, rising to 30% after a booster dose; and 

5) an anti-CS titre of 121 EU/ml (98-153) was estimated to prevent 50% of infections[11]. In addition to 

anti-CS antibody titres, immunogenicity data from both challenge studies[29] and the Phase 3 study[29] 

suggest that the avidity of anti-CS IgG, particularly to the C-terminus domain of CSP, is also associated 

with vaccine efficacy. Although most data on immunogenicity of RTS,S/AS01 derive from subjects in 

Africa, Europe and North America, it has also been shown be immunogenic in healthy Thai adult 

volunteers[30]. 

As noted, antibody titres after the fourth dose did not reach levels seen after the first three doses 

consistent with efficacy also not being as high. The reasons for this are not fully understood. One 

hypothesis is that high titre hepatitis B antibodies induced by first three doses would interfere with 
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subsequent induction of anti-CS immunogenicity. Perhaps a more likely hypothesis, supported by the 

lower anti-CS titres elicited in malaria- immune than naïve adults[31] is that increasing exposure to CS – 

whether through repeated malaria infection or vaccination - leads to hypo-responsiveness of B cell 

lymphocytes. First described for meningococcal and pneumococcal polysaccharide vaccines[32], this 

phenomenon reflects the recruitment and differentiation of fewer antigen-specific B cells into 

successive responses, with the B cell reservoir being exhausted by repeat and/or high-dose antigen 

exposure. This has two implications: 1) the booster dose is a fourth dose; 2) the capacity of subsequent 

doses to “reactivate” immunity and protection is unknown and difficult to predict. 

Prior to the pivotal Phase 3 study, there was a consistently reported association between IgG that binds 

CS and protection from infection, but not from disease. This is consistent with the pre- erythrocytic 

biological target of the vaccine. It is possible that complete protection occurs in some volunteers, but in 

high transmission settings most vaccinees do eventually develop malaria, suggesting that the proportion 

completely protected is probably small. This needs to be taken into account in interpreting associations 

of immune responses and efficacy, as partial protection from infection might be expected in most 

individuals. This also implies that vaccinated individuals, during the initial period when protected against 

malaria, also experience less exposure to blood-stage parasites and therefore may have a deferred 

development of naturally acquired blood stage immunity[31] which may later render them more 

susceptible to adverse effects of malaria infection as vaccine efficacy wanes compared to those who 

have not been vaccinated.  
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8 Additional data since Phase 3 trial completion and recommendation 

for pilots in 2015 

8.1 Long-term follow-up Phase 3 trial  

Participants in the Phase 3 trial from 3 sites (Korogwe, Tanzania; Kombewa, Kenya; Nanoro, Burkina 

Faso) were followed for an additional three years following the main study, for a total of 6 years (for 

those age 6-12 weeks at initial study enrolment) or 7 years (5-17 month age group). The primary 

outcome of interest was the incidence of severe malaria[33]. 

Among the 1739 older children (aged 5-7 years during the follow-up) and 1345 younger children (aged 

3-5 years during follow-up), there were a total of 66 cases of severe malaria during the three-year 

follow-up period. In the older age category, the overall incidences of severe malaria per person year at 

risk were 0.004 (95% CI 0 to 0.33) in the 4-dose group, 0.007 (0.001 to 0.052) in the 3-dose group, and 

0.009 (0.001 to 0.066) in the control group (Figure 13). In older children, vaccine efficacies against 

severe malaria over the entire follow-up period of 6-7 years in older children were 36.7% (14.6 to 53.1) 

for the 4-dose group and 10.1% (-18.1 to 31.6) for the 3- dose group; in younger children these were 

31.0% (4.7 to 50.0) for the 4-dose group and 34.2% (8.7 to 52.6) for the 3-dose group. 

Participants were also followed for incidence of clinical malaria during the three years, and no additional 

benefit of vaccination was seen during the extended three-year follow-up period. In the older children, 

the overall vaccine efficacy against clinical malaria during the entire 6–7-year period remained positive; 

23.7% (15.9-30.7) for the 4-dose group and 19.1% (10.8-26.7) for the 3-dose group. In one site with 

intense seasonal transmission (Nanoro), there were more episodes of clinical malaria among vaccine 

recipients during the extended follow-up than in the control group; in the 4-dose group the vaccine 

efficacy against clinical malaria was –30.3% (-59.5 to –6.4), and in the 3-dose group it was –26.0% (-56.0 

to –6.4). Nonetheless, in Nanoro there was still overall (6–7-year period) benefit of vaccination, with a 

vaccine efficacy against clinical malaria of 13.8% (3.3 to 23.1) for the 4-dose group and 7.2% (-4.2 to 

17.5) for the 3-dose group. Among younger children, there were no significant differences among 

groups in terms of clinical malaria incidence during the three-year follow-up.  

In both age categories, no vaccine related severe adverse events or potential immune related disorders 

were reported during the three years of additional follow-up. Meningitis cases were reported 

infrequently and there was no imbalance observed among groups.  

 

 

 

 

 

  

5.1_Malaria

SAGE meeting October 2021 62



Page | 63  

 
Figure 13: Incidence of severe 

malaria in children from the 

older age category (A–D) and the 

younger age category (E–H) in 

the intention-to-treat population 

(A, E) Korogwe. (B, F) Kombewa. 

(C, G) Nanoro. (D, H) Overall. 

Older age category included 

children aged 5–17 months; 

younger age category included 

infants aged 6–12 weeks. 

M0=time of the first dose 

administration in the initial 

study. M20=20 months after the 

first dose in the initial study. 

M21=21 months after the first 

dose in the initial study. Error 

bars represent 95% Cis[33]  

 

 

 

 

 

 

 

Overall, the extended follow-up study showed that over the 6–7-year period following RTS,S/AS01 

vaccination, the incidence of severe malaria declined in children regardless of treatment group. 

Although there was no evidence of continued vaccine efficacy against severe malaria during the 

additional three years of follow-up, neither was there evidence of increased susceptibility (age shift to 

older children). During the entire 6-7 year period, vaccine efficacy against severe malaria remained 

significantly positive for children receiving 4 doses in both age categories, and for those receiving 3 

doses in the 6-12 week age group. Although there was an age shift with an increase in clinical malaria 

relative to the control group during the extended follow-up period in the vaccinated 5 to 17 month-old 

children at the only intensely seasonal transmission site (Nanoro), the overall benefit of vaccination 
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against clinical malaria during the whole trial period remained. Thus, children in areas with moderate to 

high perennial malaria transmission who received 3 or 4 doses of RTS,S/AS01 benefitted for at least 7 

years after vaccination, and did not have an excess risk of clinical or severe malaria. In some intensely 

seasonal settings, where almost all of the malaria transmission occurs in a 4-5 month period, vaccinated 

children may experience a limited period of increased risk of clinical malaria relative to unvaccinated 

children, but overall would benefit from vaccination with a 4 dose schedule. Noting these results, MPAG 

assessed that these data provided providing further reassurance on the absence of an age shift effect in 

immunized children and reinforced the safety profile of the vaccine[34]. 

8.2 Revisiting the need for a 4th dose  

As noted in Section 7, vaccine efficacy over the full follow-up period was higher in 5-17-month-old 

children who received a 4th dose; efficacy appeared to decline in the period following the fourth dose in 

a way similar to that seen following the first three doses. Thus, the impact on clinical malaria with a 

fourth dose would be greater than without a fourth dose.  

In addition, among 5–17-month-old-children who only received three doses of RTS,S, the initial 

reduction in severe malaria was counterbalanced by an increase in severe malaria around 18 months 

after the initial vaccine course, presumably due to waning immunity. This age shift effect has been 

noted among recipients of other malaria-control interventions when the intervention is withdrawn. 

Presumably when the intervention group is then compared to a contemporaneously followed control 

group in the same population who did not receive the intervention and who develop immunity through 

repeated episodes of natural infection, the intervention group is at comparatively higher risk of malaria 

and severe disease for a limited period.  

This age shift in severe malaria was most marked in higher transmission settings, possibly because 

participants in the control group developed immunity through natural infection more rapidly. 

Importantly, an age shift in severe malaria was not observed up to the end of the follow-up period 

among children vaccinated at 5-17 months of age who received a fourth dose. It remained unclear at the 

time of the 2015 WHO recommendation whether there would be a substantial age shift in severe 

malaria following waning immunity after the 4th dose or whether there might be an excess in severe 

malaria cases overall among children who received 3 doses compared with children in the control group. 

As noted previously, subsequent information from long-term follow-up showed the lack of an age shift 

in severe malaria after the 4th dose and demonstrated that the age shift after 3 doses was time limited 

and without excess severe malaria cases.  

At the time of the 2015 WHO recommendation, based on the expected added protection from clinical 

malaria and overall lack of efficacy against severe malaria among children who received the 3-dose 

schedule, a 4th dose of RTS,S/AS01 was felt to be essential. However, additional data exploration and 

analyses have provided an opportunity to revisit this assumption.  

First, at the time of the initial analysis of severe malaria risk in 5–17-month-old children between the 3 

and 4 dose groups, it was assumed that up until the time of the 4th dose, the 3 and 4 dose groups were 

equivalent, and thus were treated as a single group in analysis. However additional analysis revealed 
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that, in the pre 4th dose period, there was a higher risk of severe malaria in those randomized to the 3-

dose arm than those randomized to the 4-dose arm (Figure 14).  

 

Figure 14: Vaccine impact before and after receiving the 4th dose (intention-to-treat population). Severe 

disease incidence per person year (MAL 055, aggregated over all clinical trial sites for 5-17 month cohort ITT 

population) plotted every 8 months after dose 1 is administered. The dotted line represents when dose 4 is 

given, month 0 indicates time of dose 1, month 2 completion of dose 3 and month 20 administration of dose 

4. A difference between the 3-dose and 4-dose groups is apparent before the fourth dose is given (Annex 1). 

Further analysis by GSK at the request of WHO indicated no problem with randomization, the difference 

therefore arose by chance. The risk of clinical malaria was similar in the 2 arms. However, this 

unexpected difference may have complicated the interpretation of the data over the whole study period 

and contributed to a potential overestimation of the importance of the 4th dose.  

Second, the modelling groups at Swiss TPH and Imperial College were engaged to estimate thresholds of 

vaccine coverage that predict impact—in particular, what levels of coverage (overall and for the fourth 

dose) were sufficiently high to be considered good public health value. The models (which were 

validated with data from the extended follow-up of a subset of children from the Phase 3 trial) predicted 

a small incremental impact of the fourth dose, with over 90% of impact achieved with the 

administration of the first 3 doses[5]. The modelers were unable to reproduce the extent of the age shift 

observed in the Phase 3 trial. These estimates and inability to reproduce the extent of the age shift are 

consistent with the 2015 modelling analysis[28]. Given these observations, which, along with data from 

the long-term follow-up study of a subset of Phase 3 participants demonstrating a lack of any excess of 
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severe malaria among children who did not receive a fourth dose suggest that receipt of a fourth dose is 

not critical, the Framework for WHO Recommendation on RTS,S/AS01 concludes “The policy 

recommendation for broader use of RTS,S/AS01 need not be predicated on attaining high coverage 

(including coverage of the fourth dose). High coverage for a newly introduced vaccine is frequently not 

attained until several years after the start of implementation.” Further information on the impact of the 

4th dose will be generated during the last two years of the MVIP. 

8.3 Seasonal use 

As noted previously, the anti-CSP antibody kinetics for RTS,S/AS01 show peak levels shortly after 

completion of the 3-dose regimen with rapid decline over the ensuing six months, associated with 

correspondingly high initial vaccine efficacy during this period. In the pivotal Phase 3 trial, vaccine 

efficacy against clinical malaria in 5-17 month old children was 67.6% in the 6 months following the third 

dose[3].This observation has stimulated interest in consideration of use of RTS,S/AS01 in areas of highly 

seasonal malaria transmission, such as the Sahel region in Africa, or other areas with high seasonality. 

The proposed strategy would be to deliver a primary 3 dose regimen in young children (5-17 months) 

immediately prior to the onset of the 4-6 month transmission season. Subsequent booster doses could 

then be delivered to these children annually, again just prior to the transmission season, to provide 

additional protection over and above what could be achieved with ITNs during this period of greatest 

risk[35]. 

To evaluate a seasonal vaccination strategy, an individually-randomized, controlled trial was conducted 

in young children (5-17 months) in Burkina Faso and Mali to assess whether vaccination with the malaria 

vaccine RTS,S/AS01 was non-inferior to seasonal malaria chemoprevention (SMC) with monthly 

amodiaquine plus sulfadoxine-pyrimethamine in preventing uncomplicated malaria and/or whether the 

interventions combined were superior to either alone in preventing uncomplicated malaria and severe 

malaria-related outcomes (Annex 4). SMC is a strategy recommended by WHO for malaria prevention in 

areas of highly seasonal malaria transmission, where most malaria cases occur during an approximate 4 

month period; SMC is approximately 75% efficacious in preventing uncomplicated and severe malaria[14]. 

A total of 6861 children were randomized to receive SMC (2287), RTS,S/AS01 (2288), or both (2286). Of 

these, 1965, 1988 and 1967 children respectively received the first dose of study vaccines and were 

followed over a three-year period.  

The incidence of uncomplicated clinical malaria in the SMC, RTS,S/AS01 and combined groups was 305, 

278 and 113 per 1000 person-years at risk, respectively. The hazard ratio (HR) comparing RTS,S/AS01 to 

SMC was 0.92, (95% confidence interval (CI): 0.84, 1.01), which excluded the pre-specified non-

inferiority margin of 1.20. The incidence of clinical malaria, hospital admissions with severe malaria and 

deaths from malaria was 62.8% (95% CI 58.4, 66.8), 70.5% (95% CI: 41.9, 85.0) and 72.9% (95% CI: 2.91, 

92.4) lower in the combined group than the SMC alone group. The incidence of these outcomes was 

59.6% (95% CI: 54.7, 64.0), 70.6% (95% CI: 42.3, 85.0) and 75.3% (95% CI: 12.5, 93.0) lower in the 

combined group than the RTS,S/AS01 alone group.  

Five children given RTS,S/AS01 developed febrile convulsion the day after vaccination but recovered 

without sequelae. No other serious adverse events were assessed by the investigator to be related to 
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vaccination. Eight cases of clinically suspected meningitis occurred: four in the chemoprevention alone, 

three in the RTS,S/AS01 alone, and one in the combined group. These were investigated by lumbar 

puncture, but none had proven meningitis. There was no evidence of increased mortality or hospital 

admissions in girls who received RTS,S/AS01.  

In this large study, seasonally targeted RTS,S/AS01 was safe and non-inferior to SMC in preventing 

uncomplicated malaria. The safety signals observed in the Phase 3 trial were not observed in this trial. In 

addition, the combination of these interventions was associated with substantially lower incidence of 

uncomplicated malaria, severe malaria and death from malaria. 

8.4 Fractional dose RTS,S/AS01  

The first RTS,S/AS01 CHMI trial was conducted over 20 years ago to evaluate three different adjuvant 

formulations using AS02 formulation (a water-in-oil precursor to the liposome based AS01). Although 

significant high VE was shown after CHMI challenge 3 weeks following vaccine dose 3, it was 

hypothesized that the observed high vaccine efficacy in one arm that received a fractional dose (1/5 

normal) was a chance finding due to small numbers, and was not further investigated at that time. 

The potential value of a fractional third dose was revisited two decades later in another CHMI study in a 

Phase 2a controlled open label study in the US when 16 adults were vaccinated using different vaccine 

schedules (one with delayed dose 3). Results showed highest efficacy after CHMI at 3 weeks post dose 3, 

in the group that received a delayed dose 3 (VE 86.7% [95% CI 66.8-94.6]).  

Following this, five different fractional dose regimens (n=26 participants per arm) were explored in 

another CHMI study, using two different formulations: paediatric (RTS,S/AS01E = 25ug RTS,S and an 

adjuvant system containing 25 ug of Monophosphoryl Lipid A, QS-21, and liposomes in a 0.5 ml dose) 

and adult (RTS,S/AS01B = 50ug RTS,S and an adjuvant system containing 50 ug of Monophosphoryl Lipid 

A, 50 ug of QS-21, and liposomes in a 0.5 ml dose[36]. Regimen timing and dosages are summarized in 

Table 2. 

Table 2. Vaccine dose details for all study treatment groups (Moon et al)34   

  

Challenge was conducted 3 months after the last vaccination. The vaccine efficacies of the different 

regimens are summarized in Figure 15.  
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Figure 15: Vaccine efficacy in the prevention of P. falciparum parasitaemia for all five study groups. Error bars 

indicate 95% confidence intervals[36]. 

Vaccine efficacies were similar among the 3-dose groups, with the lowest point estimate of efficacy in 

the 2-dose group (Adu1Fx), suggesting that a universal 3-dose formulation could be used across age 

groups. Although these VEs were lower than the result seen in the previous two fractional dose trials, it 

is important to note that challenge in those studies occurred 3 weeks after the last dose, as opposed to 

3 months; thus, a lower VE would be expected.  

A field trial is currently ongoing in Kenya and Ghana evaluating fractional dose regimens in children 5-17 

months of age. Five study groups (n=300 each) have been enrolled:  

1. Control: Rabies vaccine at 0,1,2 months 

2. R012-20: RTS,S/AS01 at 0,1,2 months full dose with full dose booster at 20 months (Phase 3 trial 

regimen) 

3. R012-14: RTS,S/AS01 at 0,1,2 months full dose with full dose booster at 14 months  

4. R01-Fx2-14: RTS,S/AS01 at 0,1 full dose, 1/5 fractional dose at 2 months with fractional booster 

at 14 months  

5. R01-Fx7-20: RTS,S/AS01 at 0,1 full dose, 1/5 fractional dose at 7 months with fractional booster 

at 20 months  

A preliminary interim analysis at 20 months showed that: 

• The fractional dose regimens were not superior to the standard regimen over either 6.5 or 12 

months for the same outcomes 
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Vaccine efficacy against clinical malaria was significant in all groups compared to rabies control group: 

Reactogenicity was similar as with the Phase 3 trial, and no safety signals were noted. Antibody kinetics 

were similar to what was observed in the Phase 3 trial, and there were no significant differences in 

antibody avidity among RTS,S/AS01 groups. The incidence of severe malaria was reduced by ~40% in all 

RTS,S/AS01 groups compared with the control group (Personal communication, Christian Ockenhouse, 

MD, PATH). 
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9 Modelled public health impact and cost-effectiveness estimates 

Mathematical modelling of the public health impact and cost effectiveness of RTS,S has been updated 

for perennial settings (Section 9.1) by Imperial College and SwissTPH and for seasonal settings (Section 

9.2) by Imperial College. The reports for each are available in Annex 8.   

9.1 Perennial settings 

9.1.1 Overview 

Beginning in 2015 with the conclusion of the Phase 3 trial, modelled predictions of RTS,S/AS01 malaria 

vaccine public health impact and cost-effectiveness were produced to complement empirical 

observations from trial data and, more recently, the MVIP. Initial modelled predictions were produced 

by multiple groups using harmonized inputs that drew on data from the RTS,S/AS01 Phase 3 clinical 

trials and malaria disease burden studies. Results from the 2015 analysis predicted a substantial public 

health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across the wide range of settings 

modelled. At US$ 5 per dose and a PfPR2-10 of 10–65%, the estimated median incremental cost-

effectiveness ratio was $25 (16–222) per clinical case averted and $87 (48–244) per DALY averted 

respectively, for the four-dose schedule[28]. 

The modelling analysis was updated to generate impact and cost-effectiveness estimates across a range 

of generic transmission settings using a combination of existing RTS,S/AS01 evidence and MVIP data, 

including the following: previously validated, modelled disease and vaccine parameters, and 

assumptions and cost of delivery estimates from the MVIP.   

9.1.2 Model inputs and data sources 

Model inputs and assumptions are summarized in Table 3 below. For both the OpenMalaria and 

Imperial College models, the underlying model structure and vaccine parameterization has remained 

stable since the previous round of modelling. Key differences in model inputs include more 

comprehensive coverage and cost of delivery data that have become available from the MVIP. In 

previous analyses, RTS,S/AS01 costs were estimated based on vaccine and immunization supplies 

including freight and wastage only, and were a likely underestimate of the cost of delivery. Here, the 

recurrent cost of delivery as observed during the MVIP was added to the vaccine costs. The recurrent 

cost of delivery, which excludes the introduction/initial set-up costs, may be more representative of the 

program delivery cost in the long run as the set-up costs for the MVIP countries were a substantial 

component of overall costs. Furthermore, modelers relied on recurrent costs because the sub-national 

introduction of RTS,S/AS01 in pilot countries meant that introduction costs were spread across a smaller 

number of doses delivered during the MVIP, particularly when compared to a full national roll out. 

Where applicable, ranges shown in parentheses in Table 3 (vaccine coverage, cost of delivery) were 

explored in a sensitivity analysis. All costs are in US dollars. In addition to using updated cost of delivery 

estimates, revised assumptions for vaccine coverage were used to produce updated modelled 

predictions. In 2015, vaccine coverage for the first 3 doses was assumed to be 90%, with a drop of 20% 

from the third dose to the fourth, resulting in 72% coverage of the fourth dose. Using data from the 

MVIP, and feedback from the 2015 model, for this analysis vaccine coverage was assumed to be 80% for 
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the first three doses, with a 20% drop off from the third dose to the fourth dose, resulting in 64% 

coverage for the fourth dose. It should be noted however, that as yet MVIP data on fourth dose 

coverage is limited. For all scenarios, fully vaccinated children were defined as those who received the 

first 3 doses of the schedule. 

Table 3: Data sources and model assumptions. 

 Assumption Data Source Changed 
since 2015 
report 

Demographics Constant population size and demography with an 
average life expectancy at birth of 46.6 years. 

Penny et al 
(2015) 

No 

Transmission 
intensity 

Parasite prevalence among 2–10-year-olds between 3% 
and 65%, representing current transmission levels in 
Africa. 

Malaria Atlas 
Project  

No 

Case management Effective coverage (i.e., treatment with parasitological 
cure) for clinical malaria is 45%. Access to care for severe 
malaria varied by model. 

Penny et al 
(2015) 

No 

Other interventions 
(ITN, IRS, ACT, SMC, 
health care access) 

Predictions assume that current interventions in place at 
the start of vaccination remain at static levels. 

Penny et al 
(2015) 

No 

Vaccine efficacy and 
waning 

Model predictions of RTS,S efficacy against infection 
profiles based on fitting to Phase 3 trial efficacy.1 

Penny et al 
(2015) 

No 

Vaccine schedule Three doses of vaccine given at 6, 7.5, and 9 months old 
(6–9-month implementation) with a scheduled fourth 
dose at month 272 The first two doses of the primary 
series are assumed to have 0% efficacy. 

Penny et al 
(2015) 
 

No 

Vaccine coverage 80% (range 50%–90%) coverage assumed for the first 
three-doses; we assumed a 20% drop-off in coverage for 
the fourth dose (64% coverage, range 40%–72%). 

MVIP Yes 

Seasonality Perennial transmission (no seasonality). Seasonal trends in 
rainfall, and therefore mosquito density, were assumed to 
be constant throughout the year.3 

Penny et al 
(2015) 

No 

Vaccine price US$ 5 (range $2–$10) per dose. 
$6.52 (range $2.69–$12.91) when including injection and 
reconstitution syringes, safety boxes, freight, insurance, 
and wastage. 

Penny et al 
(2015) 

No 

Cost of delivery 
estimate 

We assumed an (economic, recurring) cost of delivery per 
dose of US$ 1.62 (range $0.96–$2.67). 

Interim cost 
of delivery 
estimates 
from MVIP 

Yes  

Cost of malaria case 
management 

Costs are estimated by severity of illness and cover first-
line antimalarial drugs, diagnostics, and related supplies 
including freight and wastage. We assumed full 
compliance and adherence with the age dosage. The same 
costs were applied to all settings, ranging from US$ 1.07 
to $2.27 per uncomplicated case, and from $21.78 to 
$55.58 per severe case. 

Penny et al 
(2015) 

No 

1 The Phase 3 trial included data from 11 trial sites with different transmission intensities, and observations of efficacy against 
clinical and severe disease at 3-month intervals in each trial site for a median of 48 months follow-up. In 2015, both modelling 
groups calibrated the efficacy properties, including decay, of RTS,S, by replicating the trials in-silico and matching to 
uncomplicated malaria impact in the trials site. 
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2 This is not the schedule of 6, 7, 9 and 24 months, but the previous model uses 27 months and that was assumed for the 
updated analysis as well.  

3 Results of the seasonal use case for RTS,S are included elsewhere in this report.  

 

9.1.3 Results  

The vaccine impact and cost-effectiveness predictions in 2-10 year old children are summarized across 

parasite prevalence levels ranging from 10%–50% (Table 4, Figure 16). Predictions of the potential public 

health impact of the RTS,S/AS01 vaccine remain largely unchanged, as both modelling groups used the 

same malaria transmission and vaccine impact models that were used for the analyses performed in 

2015, with minor adjustments to some parameters. The cost per DALY averted and cost per clinical case 

averted predictions (Table 4, Figure 16: D, E and F) have marginally increased based on the updated 

additional cost of delivery predictions. Central estimates of cost-effectiveness from individual models 

still fall within the range of those presented in 2015, and are consistent with a prediction that 

RTS,S/AS01 is cost-effective compared with standard norms and thresholds. The relative impact of the 

added cost of delivery predictions is larger at the lower (US$ 2) assumed cost per dose level.  

Table 4: Public health impact and incremental cost-effectiveness ratios (ICER) for 4-dose schedule at 

15 years of follow-up in regions with a parasite prevalence among 2–10-year-olds of 10–50%.   

 Median estimate (range) 

 Swiss TPH model Imperial College Model 

Percentage of malaria deaths averted in children 
younger than 5 years 

9.2% (8.7% to 10.1%) 18.6% (13.6% to 20.8%) 

Percentage of clinical cases averted in children 
younger than 5 years 

13.2% (11.2% to 14.6%) 20.9% (20.1% to 23.6%) 

Malaria deaths averted per 100 000 fully 
vaccinated children (receives at least 3 doses)1 

417 (205 to 540) 448 (315 to 534) 

Malaria clinical cases averted per 100 000 fully 
vaccinated children 

108,824  
(46978 to 121182) 

101,413  
(57839 to 145301) 

ICER (US$) per DALY averted   

   $2 per dose $50 (42 to 120) $52 (43 to 78) 

   $5 per dose $97 (81 to 230) $103 (86 to 151) 

   $10 per dose $175 (146 to 412) $187 (157 to 274) 

ICER (US$) per clinical case averted   

   $2 per dose $31 (25 to 46) $14 (10 to 26) 

   $5 per dose $59 (48 to 89) $28 (19 to 50) 

   $10 per dose $105 (87 to 160) $52 (35 to 91) 

1 The SwissTPH model deaths include those directly attributable to the disease and those caused by co-morbidities. The 
absolute number of deaths (and how RTS,S impacts them) can differ between models which can result in similar deaths averted 
per 100 000, despite there being a different percent of deaths averted 

Estimates show the median and range of model predictions across transmission settings. Of note, 

summary statistics are not directly comparable between the current analysis and Penny et al (2015)[28], 

because of the way the estimates are presented. These updated predictions show the median and range 

5.1_Malaria

SAGE meeting October 2021 72



Page | 73  

of model predictions (at 80% coverage), whilst predictions from Penny et al (2015)[28] show the median 

(range) across four models’ medians (at 90% coverage). Additionally, the estimates in Table 4 show the 

summary statistics over a PfPr range of 10-50%, whereas in the previous predictions a PfPr range of 10-

65% was used. 

 

Figure 1610. Summary of impact and cost-effectiveness predictions for RTS,S/AS01 across transmission 
settings of 3-65%.  

Figure 16 reflects the full range of possible PfPr from 3% to 65%. Panels in the top row show 

predictions of impact of A) clinical cases, B) hospitalizations, and C) malaria deaths averted per    

100 000 fully vaccinated children, as a function of baseline parasite prevalence among 2–10-year-

olds (PfPr2-10) from Imperial (blue bars) and Swiss TPH (mauve bars) models. Bars represent the 

median estimate and the error bars represent the 95% credible intervals. Panels in the bottom row 

show the cost per DALY averted as a function of PfPr2-10 for an assumed cost per dose of D) US$ 2, E) 

$5 and F) $10 for Imperial (blue lines) and Swiss TPH (mauve lines) models. Lines represent the 

median estimate and shaded areas represent the 95% credible intervals. 

9.1.4 Interpretation of results 

Both the Swiss TPH and Imperial College models predict a positive public health impact of the 

introduction of RTS,S/AS01 in settings with PfPr2-10 between 10% and 50% over a 15-year time horizon, 

which is consistent with previously published estimates. Vaccine impact increased with increasing 

coverage. Compared with the previous 2015 analysis, the cost per case and DALY averted have slightly 

increased due to the inclusion of more comprehensive information on cost of delivery, RTS,S/AS01 is still 

considered cost-effective by general thresholds and standards. 
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9.2 Seasonal settings 

9.2.1 Background  

Data from a trial assessing the individual and combined impact of seasonal use of RTS,S/AS01 and SMC 

(Annex 4) as well as the Imperial College individual-based transmission model of P. falciparum malaria 

were used to estimate the population level impact of a seasonally targeted RTS,S schedule. Details on 

the model validation results, transmission model parameters, impact and cost-effectiveness estimates 

are provided in Annex 8. The cost-effectiveness of this approach was considered either alone or in 

combination with SMC. Model comparisons were made across two seasonality archetypes, characteristic 

of the seasonality patterns across the Sahel and Sub-Sahel region. Three potential vaccination strategies 

were considered (see Table 5).  

Table 5: Potential vaccination strategies modelled for a seasonally targeted schedule 

Vaccination Strategy Key features (potential advantages) 

EPI vaccination: age-based priming 

series, age-based additional doses. 

• Age at first vaccination fixed at 5 or 6 months of age. 

• Uses existing EPI vaccine infrastructure and current contacts to 
deliver RTS,S.  

Seasonal vaccination (SV): 

seasonal priming series, seasonal 

fourth and fifth doses 

• Calendar month of first vaccination fixed.  

• Peak vaccine efficacy of primary series and additional doses are 
aligned with time of peak risk.  

• Once the infrastructure for seasonal doses is established, it may be 
possible to provide more vaccine doses in childhood. 

• Dose schedule changes could result in heightened efficacy of 
additional doses compared to EPI scheduling.  

Hybrid vaccination: age-based 

priming series, seasonal fourth and 

fifth doses 

• Age at first vaccination fixed at 5 or 6 months of age.  

• Uses EPI vaccine infrastructure.  

• Peak efficacy of additional doses are aligned with time of peak risk.  

• Once the infrastructure for seasonal doses is established, it may be 
possible to provide more vaccine doses in childhood.  

 

The model structure cannot capture Hybrid vaccination strategies with the main results showing only EPI 

and seasonally targeted RTS,S schedule deployment. Further population-level modelling of a Hybrid 

strategy is underway. 

9.2.2 RTS,S impact – seasonally targeted vaccination compared to EPI vaccination 

Over a 15-year period, the model simulations showed that seasonally targeted RTS,S schedule resulted 

in greater reductions in cases and deaths than EPI vaccination across all endemicity settings in both 

seasonal and highly seasonal settings. An additional fifth dose and higher fourth and fifth dose efficacy 

increased this impact (Figure 17). 

Considering the effect of seasonality, the incremental benefit of seasonally targeted RTS,S schedule over 

EPI (defined as the proportion of additional events averted with a seasonally targeted RTS,S schedule 

versus EPI schedule) was larger in highly seasonal settings compared to seasonal settings (average 75% 
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additional cases and 64% additional deaths averted vs 60% additional cases and 55% additional deaths 

averted).  

 

 

This is likely a result of the burden of malaria being concentrated in a shorter time period in highly 

seasonal settings compared to in seasonal settings where burden is more uniformly spread over 5–6 

months. The benefit of seasonally targeting vaccines was reduced when considering the impact per 100  

000 fully vaccinated children due to the increased number of doses delivered in the seasonally targeted 

RTS,S schedule (Figure 17: 1B, 1D).  

However, despite seasonally targeted RTS,S schedule resulting in the largest reductions in malaria cases 

and deaths, modelling results showed the EPI vaccination strategy to be more beneficial during 10–20 

months of age (when children are at higher risk of severe malaria outcomes), due to the disparity in ages 

of the first vaccine dose between strategies (Annex 8). A Hybrid strategy that uses EPI delivery for the 

primary series could potentially be more impactful than seasonally targeted RTS,S schedule by 

preserving a young age at first vaccination and retaining the benefits of seasonally targeted fourth and 

fifth doses (Annex 8).  

Figure 17: Cumulative clinical cases averted over 15 years as a function of baseline PfPR2-10  (four settings 

representative of medium to high transmission intensity are shown) and seasonality A&C) per population and 

B&D) per 100 000 fully vaccinated children. Coverage is fixed at 80% for the first three doses with a 20% drop off 

for the fourth and fifth doses 
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9.2.3 RTS,S impact with SMC delivery 

The model simulations indicated the combination of RTS,S and SMC to be significantly more impactful 

than either intervention alone in seasonal settings. The combination of seasonally targeted RTS,S 

vaccination strategy + SMC resulted in a greater number of cases and deaths averted compared to EPI 

vaccination strategy + SMC (Figure 18). The inclusion of SMC alongside a vaccination schedule also reduces 

the effect of disparity in age at first vaccination between seasonally targeted RTS,S vaccination and EPI 

vaccination (Annex 8).  

On average, the seasonally targeted RTS,S vaccination strategy averted an additional 61% more cases than 

SMC alone with the EPI vaccination strategy averting an additional 31%. When interventions were 

combined, the additional impact of vaccination over SMC was higher in seasonal settings than in highly 

seasonal settings. This may reflect the greater importance of protection conferred by RTS,S outside the 

peak transmission season, in areas where transmission is less seasonal, when SMC is in place to address 

the burden during the peak months. 

 

 

  

Figure 18: Cumulative clinical cases and deaths averted over 15 years per population as a function of baseline 

PfPR2-10 (four representative of medium to high transmission intensity are shown) and seasonality. Coverage is 

fixed at 80% for the first three doses with a 20% drop off for the fourth and fifth doses. SMC coverage at 75%. 
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9.2.4 Cost-effectiveness  

Details on cost-effectiveness modelling are provided in Annex 8. As no seasonal delivery cost data or 

introduction data are yet available for RTS,S, seasonal costs were assumed equivalent to EPI vaccination 

costs informed by MVIP data.  

Incremental cost-per-case and cost-per-DALY averted for each intervention compared with no vaccine, 

for an assumed cost per dose of US$5, were lowest at intermediate to high levels of baseline PfPR2-10. 

ICERs were generally less than $100 per DALY averted and $20 per case averted for a PfPR2-10 of more 

than 20% for all vaccination schedules (Annex 8, Figure A14). Overall, the model estimated that ICERs 

were marginally lower for the seasonal vaccination strategies (i.e., more cost-effective) despite the 

higher number of overall doses delivered (Annex 8, Table A5).  

When added to SMC, the cost of vaccination was generally less than $160 per DALY averted and $50 per 

case averted for all vaccination schedules (Annex 8b, Figure A14). ICERs were lower for seasonally 

targeted RTS,S schedules compared to EPI schedules (Annex 8b, Table A6).   

9.2.5 Interpretation of results 

Population-level modelling indicates that seasonally delivered RTS,S vaccination in seasonal settings  

results in greater absolute reductions in malaria cases and deaths over 15 years compared to RTS,S 

delivery though an EPI vaccination strategy. However, although seasonal vaccination strategy may avert 

more cases than the EPI strategy, further exploration of seasonal vaccination clinical trial data and 

model results highlight the potential for seasonal vaccination strategies to result in delayed first 

vaccination depending on birth month leaving children at risk of malaria in their first transmission 

season.   

Reductions in malaria morbidity and mortality are greatest when vaccines are delivered in combination 

with Seasonal Malaria Chemoprevention (SMC), with seasonal vaccination strategy + SMC predicted to 

result in the largest burden reductions.   

Cost-effectiveness analysis, while illustrative, suggests that all delivery strategies (routine EPI, SV, 

hybrid) are cost-effective at a cost per dose of US$ 5 in seasonal settings with medium to high 

transmission intensity. Both trial and modelling results indicate RTS,S vaccination would be a cost-

effective addition to existing SMC programmes. When considering RTS,S vaccination in seasonal settings 

the potential achievable coverage will likely determine the most beneficial delivery approach. 

10 Equity considerations  

The vast majority of malaria illness and death occur in Africa and in children under 5 years of age.  

Malaria disproportionately affects the poor and those living in rural areas. HIV exposure, HIV infection or 

chronic malnutrition, all of which frequently overlap geographically with areas of malaria endemicity, 

are additional risk factors for malaria illness or death[37, 38]. Although progress has been made in 

improving equity for malaria control interventions, in some countries, access to malaria control 

measures differ by SES and rural/urban settings[6]. The RTS,S malaria vaccine has been tested and proven 

safe in children with HIV or those with malnutrition.   
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Evidence from the midline household surveys in the 3 pilot countries show that the RTS,S vaccine was 

delivered equitably by sex and by socio-economic status, the exception being Malawi, where vaccine 

coverage during the first 24 months of vaccine introduction was 58% for children in the lowest socio-

economic status and 68% among children in the highest socio-economic status. Because of the broad 

reach of the vaccine, and relatively rapid uptake to reach a high proportion of age-eligible children, 

layering of the malaria vaccine and ITNs has increased access to at least one malaria prevention tool (ITN 

or malaria vaccine) among vulnerable children. 
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11 Overall RTS,S SAGE/MPAG Working Group assessment and summary 

of key recommendations for SAGE/MPAG consideration  

11.1 Assessment of vaccine safety 

A substantial amount of new information is now available to address the questions raised by 

SAGE/MPAG in 2015 following the Phase 3 trial on the safety, impact, and feasibility of RTS,S/AS01 as a 

malaria prevention intervention, to inform a potential recommendation on broader use of the vaccine. 

In particular, in the first two years of the MVIP, designed to respond specifically to the outstanding 

questions on the public health use of the vaccine, it has been demonstrated that the vaccine can be 

delivered successfully. The RTS,S/AS01 vaccine has been incorporated by the MoH in the EPI 

programmes in Ghana, Kenya, and Malawi using the routine systems for new vaccine introduction, and 

uptake has been good in all three countries, reaching or exceeding expectations for a new vaccine with a 

novel schedule, even in the context of the COVID-19 pandemic and response. The MVPE has been 

conducted according to protocol and at high quality. The statistical analysis was conducted according to 

the published Statistical Analysis Plan.   

Additional data on safety from sources outside of the MVIP have also become available since the last 

SAGE/MPAG meeting in 2015. These additional data include: 1) long-term follow-up of a subset (>3000 

children) of the Phase 3 trial participants for an additional three years after conclusion of the main 

study; 2) a seasonal use study in more than 6000 children assessing the individual and combined impact 

of RTS,S/AS01 and SMC; and 3) a trial in about 1200 children of different fractional dose regimens of 

RTS,S/AS01.  

Based on the safety data available from the MVIP, a large, structured pilot introduction, through which 

more than 1.7 million RTS,S/AS01 vaccine doses were provided, and from these additional sources, the 

Working Group concurs with the MVIP DSMB that no evidence of a causal relationship between the 

RTS,S/AS01 vaccine and the 3 potential safety signals – cerebral malaria, meningitis, or mortality by 

gender, has been found.  

This conclusion comes following the DSMB and Working Group review of the primary outcome 

measures on safety from the MVPE, 24-months after vaccine introduction (Annex 6). Analysis of the data 

showed that the safety signals seen among 10,306 infants and children who received RTS,S/AS01 in the 

Phase 3 clinical trial of RTS,S/AS01 (2009-2014), and which were considered possible chance findings, 

were not present. The signals were not seen in the pilot implementation after 652,673 children received 

their first dose (and 494,745 their third dose) in implementation areas where the vaccine was provided, 

or among the 10,032 age-eligible children admitted to the sentinel hospitals (4,870 from 

implementation areas), during the period from start of vaccination in 2019 until 30 April 2021.  

The DSMB and Working Group concluded that the MVPE results showed comparable burden for 

meningitis, cerebral malaria, and gender-specific mortality among age-eligible children living in 

implementation areas and those in the comparison areas, with results consistently showing risk ratios 

near 1 (i.e., no association) for probable meningitis, cerebral malaria, and the vaccine-gender interaction 

with mortality. In addition, estimates comparing the risks in intervention areas with those in comparison 
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areas were inconsistent with the corresponding risk ratio point estimates (adjusted for vaccine 

coverage) observed in the Phase 3 trial. In other words, the hypotheses that there was a causal 

association between the vaccine and those specific three risks were rejected. Consistent with this 

observation, no safety signals were detected during the extension period of the long-term (7-year) 

follow-up study of a subset of children enrolled in the Phase 3 trial, nor in the seasonal use or fractional 

dose trials.  

The GSK-sponsored Phase 4 post-authorization study continues, as part of the risk management plan 

with the EMA, and will accrue additional data on safety, with data cleaning and an interim analysis 

planned for 2023, around the end of the MVIP and a final analysis planned in 2025.   

The Working Group does not consider it necessary to wait until further data have accrued to conclude 

on the safety of the RTS,S/AS01 vaccine. The primary concern regarding the 4th dose was around the loss 

of protection against severe malaria among children who received only 3 doses during the Phase 3 trial. 

However, the long-term follow-up study and re-analysis of the Phase 3 data indicate that the age shift in 

severe malaria cases was limited in duration, without an excess in severe malaria cases in children who 

received only 3 doses. The Working Group notes that in the Phase 3 trial there was no excess in 

meningitis cases in the children who received 3 doses vs 4 doses after month 20, when the 4th dose was 

provided (3 meningitis cases in the 3-dose arm and 2 cases in the 4-dose arm after month 20 until study 

end); there was no excess in possible cerebral malaria in the children who received 3 doses vs 4 doses in 

the Phase 3 trial after month 20 (8 cases in the 3-dose arm and 7 cases in the 4-dose arm); and the 

gender imbalance in mortality was observed prior to month 20, and if causally associated with the 

vaccine, should have been observed during the first 24 months after vaccine introduction. 

11.2 Assessment of impact 

The DSMB and Working Group concluded that the MVPE findings demonstrated clinically and 

statistically significant effectiveness of the RTS,S/AS01 vaccine against severe malaria and that this effect 

was assessed as consistent with the effect observed in the Phase 3 trial and indicated a beneficial impact 

of the vaccine. As expected, there was insufficient power at this point to detect an effect on mortality 

(~13 500 child deaths were recorded through the mortality surveillance system, while to achieve 90% 

power to demonstrate a 10% reduction in mortality, 24 000 deaths will need to have accumulated). 

Nonetheless, the 7% impact on mortality (not statistically significant) measured through the MVPE is 

consistent with what would be expected if malaria contributes to about 30% of deaths in young children 

(based on a 25% reduction in severe malaria as a proxy for malaria related mortality). The conclusions 

regarding a positive impact of the vaccine in routine use were based on the following: 

• The number of events accrued were adequate to demonstrate significant benefit for preventing 

severe malaria. For mortality, the number of accrued events had not yet reached the target 

sample size, so the analysis was not yet adequately powered. 

• The pooled analysis indicated that RTS,S/AS01 vaccine significantly reduced the incidence of 

severe malaria in the implementation areas, and hospital admissions with a positive malaria 

test; a non-statistically significant reduction in all-cause mortality (excluding accidents/trauma) 

was also seen. 
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The Working Group recognizes the added benefit of delivering the RTS,S/AS01 vaccine using a seasonal 

vaccination strategy in areas of highly seasonal transmission, with demonstrated VE against clinical and 

severe malaria, malaria-specific mortality and all-cause mortality. The Working Group also acknowledges 

the potential benefit of seasonal vaccination in areas of perennial transmission with seasonal peaks.   

11.3 Assessment of feasibility 

At this juncture, the decisions regarding a broader recommendation for RTS,S/AS01 are to be based 

primarily on safety and impact considerations. However, the available feasibility data are very 

encouraging. This assessment is based on the following observations:  

• Despite RTS,S/AS01 being a new vaccine delivered through EPI and requiring an expanded 

schedule, reasonably high coverage of the first three doses was achieved in all three pilot 

countries. This was achieved in a relatively short time period and in the context of substantial 

challenges to the health system due to the COVID-19 pandemic, indicating strong demand by 

parents and acceptance by health workers who deliver the vaccine.  

• It is too early to assess fourth dose coverage, although preliminary information suggests drop-

out rates between dose 3 and dose 4 have been around 19-30%, not an unexpected range for 

the first months of implementation of a new vaccine provided during the 2nd year of life, and 

provided using routine strategies alone without supplemental activities. It is notable that the 

coverage rates reached were in the context of an ongoing pandemic. The level of uptake of the 

fourth dose indicates that the fourth dose can be delivered; the continuation of the pilots will 

provide lessons learned on best practices to increase fourth dose coverage.  

• Malaria vaccine introduction did not have an impact on the uptake of other routine childhood 

vaccinations, ITN use, health care seeking behaviours for febrile illness, or other child health 

interventions such as the provision of vitamin A or deworming.  

• The malaria vaccine was delivered equitably, with no difference in delivery by sex, nor major 

difference by socio-economic status. 

• Malaria vaccine uptake during the first 18 months of implementation was 69-75% among 

children who had not used an ITN, suggesting the intervention was reaching children who have 

lower access or use of other malaria prevention measures. Thus, the malaria vaccine increases 

the reach and reduced inequities to access to malaria prevention interventions.  

• In general, care givers and health care providers had positive attitudes towards the vaccine. 

Further work is required with health care providers to look for opportunities to provide missed 

vaccine doses (for all childhood vaccines), and improved understanding on how to ensure the 

provision of doses to children who present late for vaccination. Proper data recording tools are 

needed to assist with the implementation of the above.  

• Estimates on cost of RTS,S/AS01 delivery during the MVIP were comparable to costs of HPV 

vaccine pilot implementation; comparisons of these estimates to those available from routine 

new vaccine introductions (outside of pilots) should be made with caution, as methods and 

delivery strategies may differ during routine new vaccine introduction.  
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11.4 RTS,S/AS01 in the context of other malaria control interventions 

RTS,S/AS01 is a complementary tool for prevention. LLINs remain a proven and cost-effective 

intervention. SMC is an effective intervention for areas with highly seasonal malaria. IPTi, although not 

widely deployed, provides added protection during the first year of life. And IRS, although limited in use, 

also is efficacious. Access to quality case management is essential when malaria illness occurs regardless 

of the preventive measures in place. The WHO Global Malaria Programme supports malaria control 

approaches that are flexible and tailored to local context. Adequate funds for the recommended malaria 

control interventions, and to support the tailored approach to malaria control, should be allocated to 

ensure their deployment and coverage to maximize impact. 

11.4.1 RTS,S/AS01 and seasonal malaria chemoprevention 

When RTS,S/AS01 was delivered, in the context of a controlled trial, as a primary series before the 

seasonal increase in malaria incidence in highly seasonal transmission settings in Burkina Faso and Mali, 

followed by yearly booster doses before the start of the malaria transmission season, it was 

demonstrated to be non-inferior to four annual courses of seasonal malaria chemoprevention (SMC) 

with SP-AQ in protecting against uncomplicated clinical malaria over a period of three years. 

Furthermore, a combination of RTS,S/AS01 and SMC was superior to RTS,S/AS01 or SMC alone in 

reducing the incidence of uncomplicated clinical malaria, hospital admissions with severe malaria and 

deaths from malaria.     

The combined impact of RTS,S/AS01 and SMC was impressive; compared to SMC alone, the combination 

significantly reduced episodes of severe malaria by 70%, severe malaria anaemia by 68%, all cause 

deaths by 53%, and malaria deaths by 73%. Importantly, subsequent single annual doses of RTS,S/AS01 

delivered just prior to the seasonal incidence increase provided continued additional benefit of a similar 

magnitude in the three years following the initial primary series. The trial has entered an extension 

phase to measure the added benefit of continuing annual dosing beyond 2 booster doses. Modelled 

estimates of impact are high, including when the initial 3 dose series is provided as part of routine 

immunizations followed by annual boosts, and the strategy is estimated to be cost-effective.  

Thus, the combination of seasonal chemoprevention and seasonal vaccination with RTS,S/AS01 (primary 

series and annual boosting) , appears to be a promising approach to increase the operational 

effectiveness of the malaria vaccine by deploying it just prior to the high transmission seasons. This 

strategy may be well-suited to areas in Africa with highly seasonal malaria transmission or with 

perennial transmission with seasonal peaks, though it has yet to be evaluated in these settings. For 

example, in such areas, it is possible that it could be used as an alternative to the 4-dose schedule as 

evaluated in MVIP, with the primary series either being provided just before the peak season, through a 

campaign, followed by two (or more) annual boosts, or it could be provided through the routine EPI 

programme, with the primary series beginning around 5 months of age, and followed by two annual 

boosts.  
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11.5 Conclusions and recommendations for SAGE/MPAG consideration  

The RTS,S SAGE/MPAG Working Group recommends that RTS,S/AS01 should be provided at a 

minimum of 4 doses to reduce malaria disease and burden in children from 5 months of age living in 

countries in sub-Saharan Africa with moderate to high malaria transmission. The RTS,S/AS01 vaccine 

has an acceptable safety profile, and its introduction results in a significant reduction in severe malaria, 

an acceptable surrogate indicator for the likely impact on mortality. The Working Group notes that the 

vaccine provides substantial added protection against malaria illness and death even when provided in 

addition to a package of existing interventions which are known to reduce the malaria burden. The 

introduction of a vaccine at this time would come when progress in recent years has stalled in malaria 

control in Africa, when our current tools are threatened by drug and insecticide resistance, and when 

malaria remains a primary cause of illness and death in African children, with more than 260 000 child 

deaths from malaria annually. 

In areas of moderate to high, perennial malaria transmission, the vaccine should be provided as a 3-dose 

primary series, starting from around 5 months of age and with a minimal interval between doses of 4 

weeks. For children who are delayed in receiving their first dose, vaccination should be started before 18 

months of age. A fourth dose should be given between about 12 and 18 months after the 3rd dose (i.e., 

at around 18 months to 2 years of age), however there can be flexibility to optimize delivery. The 

minimal interval between the 3rd and the 4th dose should be 4 weeks.  

In areas with highly seasonal malaria or areas with perennial malaria transmission with seasonal peaks, 

the RTS,S SAGE/MPAG Working Group recommends that consideration should be given to the option of 

providing the RTS,S/AS01 vaccine seasonally, with potential 5-dose strategies including:  

1) For all children under 5 years of age who have already completed the 3-dose primary series 

through routine administration, provide annual dose(s) just prior to the peak transmission 

season, or 

2) For all children 5-17 months of age, give the 3-dose primary series monthly as a “campaign” just 

prior to the peak transmission season and then in subsequent years provide an annual dose just 

prior to peak seasons.  

The RTS,S SAGE/MPAG Working Group makes this recommendation for possible 5-dose seasonal malaria 

vaccination strategies based on available data.  The Working Group understands that this trial is 

continuing with additional doses provided to children up until the age of 5 years, and final results will 

contribute evidence on vaccine efficacy beyond 5 doses. The Working Group also notes that providing 

the first dose from 5 months of age may limit opportunities for integration with the delivery of other 

vaccines and/or for protection of children slightly younger (i.e., 4 months).    

The Working Group notes that the careful and intentional monitoring for the safety signals seen in the 

Phase 3 trial, through quality data collection at sentinel hospitals and through community-based 

mortality surveillance, has revealed no evidence that the safety signals observed in the Phase 3 trial 

were causally related to the RTS,S/AS01 vaccine. Thus, the Working Group does not recommend special 

mechanisms be put in place to look for these signals during expansion of vaccine use or adoption by 

other countries.  
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WHO should lead the development of a Framework to guide where the initial limited doses of a malaria 

vaccine should be allocated, through a transparent process that incorporates input by key parties, with 

appropriate representation and consultation. This Framework should include dimensions of market 

dynamics, learning from experience, scientific evidence for high impact, implementation considerations, 

and social values, including fairness, and equity. 

The MVIP should continue as previously planned for an additional two years to 1) measure the impact of 

the introduction of RTS,S/AS01 on mortality; and 2) measure the added benefit of the fourth dose (the 

Working Group noted that in the Phase 3 clinical trial, the impact on severe malaria was only seen 

among children who had received 4 doses of the vaccine but there was impact on clinical malaria among 

children who received only 3 doses, though lower than that observed on children who had received 4 

doses). Data collection on severe malaria and safety endpoints should continue. Any revisions or 

modifications concerning the recommendation for the fourth dose can be made at the end of the pilots.  

11.6 Research recommendations  

The Working Group recommended a number of areas for monitoring, evaluation, and research. None of 

these are meant to be obstacles to the broader implementation of the RTS,S/AS01 vaccine.  

• Data from the MVPE and other studies show no evidence that the safety signals observed in the 

Phase 3 trial were causally related to the RTS,S/AS01 vaccine. Strengthening of national 

pharmacovigilance systems is highly desirable to detect unanticipated adverse effects of this 

vaccine and any other newly introduced vaccines, as well as for vaccines already in use. 

• The MVIP will continue to monitor for or collect data on safety and impact, and on the value of 

the fourth dose through to the end of the programme and in the planned case control study.   

• Based on experience in the three pilot countries, the MVIP will also provide information on how 

best to achieve coverage of the 4th dose. 

• Monitoring and evaluation around flexible schedules and implementation strategies are 

encouraged; this includes monitoring and evaluation around implementation strategies for 

RTS,S/AS01 seasonal vaccination.  

• Vaccine effectiveness studies following widespread introduction of RTS,S/AS01 are encouraged. 

 

The following research are recommended for the following areas, with the PAG noting that none are 

prerequisite prior to expanded use of RTS,S/AS01. 

(1) areas with moderate to high malaria transmission with perennial transmission 

• Through the MVIP, continued collection and monitoring data on safety and impact through the 

end of the programme and in the planned case control study, and on the added benefit of the 

fourth dose. 

• Through the MVIP, collect additional information on how best to achieve coverage of the 4th 

dose, and its impact on severe malaria and mortality.  

• Added or synergistic effect of RTS,S/AS01 when given in conjunction with expanded IPTi. 

(2) areas with highly seasonal malaria or areas with perennial malaria transmission with seasonal peaks 
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• Operations research around the delivery of seasonal vaccine dosing, including around annual 

pre-season dosing after a primary series given through the routine health clinics in areas of 

perennial or seasonal transmission.  

• Further evaluation will be required to determine how best to deliver the combination of SMC 

and seasonal malaria vaccination in areas of high malaria burden in the Sahel, sub-Sahel, and 

areas of perennial transmission with seasonal peaks.  

• Safety, immunogenicity, and effectiveness of annual doses beyond dose 5. 

• Planned follow-up of the ongoing seasonal malaria vaccination trial and case-control study, and 

evaluation of any age shift effect of clinical or severe malaria cases in immunized children 

(relative to the control group) after ceasing vaccination.  

(3) both areas (1) and (2): 

• Parasite genotype monitoring to detect any emergence of vaccine escape mutants – in context 

of broader use of RTS,S/AS01 

• Co-administration of RTS,S/AS01 with typhoid conjugate, Meningococcal, and inactivated polio 

vaccines, and other antigens as appropriate.   
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effectiveness.  

Continuous oversight and monitoring of safety data from the MVIP, and expert advice on the vaccine’s 

safety profile, was provided by the members of the MVIP Data Safety and Monitoring Board (DSMB) - 

Professor Cynthia Whitney Dr Jane Achan, Dr Esperança Sevene, Professor Charles Newton, Professor 

Larry Moulton.  

Gemma Villanueva and Nicholas Henschke from the Cochrane Response supported the systematic 

review of evidence and the Grading of Recommendations Assessment, Development and Evaluation 

(GRADE) used to inform the recommendations. Finally, Dr Laurence Slutsker had a crucial role in 

consolidating the evidence and drafting this report.   
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13 List of supportive materials and annexes  

Supportive materials – via links 

Background paper on RTS,S/AS01 Malaria vaccine, prepared by the Joint Technical Expert Group (JTEG) 
on Malaria Vaccine and WHO Secretariat, September 2015 
Available at: 
https://www.who.int/immunization/sage/meetings/2015/october/1_Final_malaria_vaccine_backgroun
d_paper_v2015_09_30.pdf  
 
An evaluation of the cluster randomized pilot implementation of RTS,S/AS01 through routine health 
systems in moderate to high malaria transmission settings in sub-Saharan Africa: a post-authorization 
observation study (MVPE Master Protocol v9.0)  
Available at: https://clinicaltrials.gov/ProvidedDocs/65/NCT03806465/Prot_ICF_000.pdf  
 
Statistical analysis plan for the MVPE v3.4 
Available at: https://clinicaltrials.gov/ProvidedDocs/65/NCT03806465/SAP_002.pdf  
 

Annexes  

Annex 1: Framework for WHO Recommendation on RTS,S/AS01 Malaria Vaccine 

Annex 2: Malaria vaccine targets and pipeline  

Annex 3: Statistical report on the results of the RTS,S/AS01 Malaria Vaccine Pilot Evaluation 24 months 

after the vaccine was introduced (September 2021, v1.2) 

Annex 4: Publication Chandramohan et al. Seasonal Malaria Vaccination with or without Seasonal 

Malaria Chemoprevention. NEJM. 2021;  

Annex 5: Health Utilisation Study (HUS) Round 2 - cross-country report on findings from the Primary 

Child Caregiver cohort sample 

Annex 6: MVIP Data Safety and Monitoring Board meeting recommendations following review of 

malaria vaccine pilot evaluation results (July 2021) 

Annex 7: Reports of the extraordinary meetings by the African Advisory Committee on Vaccine Safety 

(AACVS) and the Global Advisory Committee on Vaccine Safety (GACVS) (August 2021) 

Annex 8: Modelled public health impact and cost effectiveness of RTS,S/AS01 in seasonal and perennial 

settings (August 2021) 

Annex 9: GRADE and Evidence to Recommendation table on the use of malaria vaccine 
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14 RTS,S SAGE/MPAG Working Group Membership and Terms of 

Reference  

Members of the MVIP Programme Advisory Group (PAG) in its capacity as the RTS,S SAGE/MPAG 

Working Group, include:  

• Prof Ifedayo Adetifa, KEMRI-Wellcome Trust Research Programme, Kenya 

• Prof Nick Andrews, Public Health England, United Kingdom 

• Dr Dafrossa Cyrily Lyimo, Independent consultant (and former National Immunization and 

Vaccine Development Programme Manager, Tanzania 

• Dr Corine Karema, Independent consultant (and former Director of the Rwanda National Malaria 

Control Programme, Rwanda 

• Dr Eusébio Macete, Centro de Investigação em Saúde de Manhiça, Mozambique (Co-Chair) 

• Prof Kim Mulholland, Murdoch Children’s Research Institute, Australia 

• Prof Kathleen Neuzil, Center for Vaccine Development and Global Health (CVD), University of 

Maryland School of Medicine, USA  

• Prof Peter Smith, London School of Hygiene & Tropical Medicine, United Kingdom (Chair)  

• Prof S. Patrick Kachur, Mailman School of Public Health, Columbia University, USA 

 

Past members have included: 

• Prof Graham Brown, University of Melbourne, Australia 

• The late Ms Adelaide Shearley, John Snow Inc., Zimbabwe   

• Prof Fredrick Were, University of Nairobi and Kenya Paediatric Research Consortium, Kenya 

 

Terms of Reference is accessible here: https://www.who.int/initiatives/malaria-vaccine-

implementation-programme/programme-advisory-group   
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