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REVIEW ARTICLE

The effect of confounding variables in studies of lead exposure and IQ

Cynthia Van Landinghama, William G. Fullera and Rosalind A. Schoofb
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ABSTRACT
Methods proposed to address confounding variables frequently do not adequately distinguish con-
founding from covariation. A confounder is a variable that correlates both with the outcome and the
major exposure variable. Accurate treatment of confounding is crucial to low dose extrapolation of
the effects of chemical exposures based on epidemiology studies. This study explores the limitations
of current regression models in extrapolation to the low dose region of the dose-response curve due
to the existence of unrecognized and uncontrolled confounding, using epidemiological data for lead.
Based on the reported data in analyses by Lanphear and colleagues and Crump and colleagues, and
drawing on other studies, Wilson and Wilson considered maternal IQ, HOME score, SES, parental edu-
cation, birthweight, smoking, and race as characteristic variables which may have interaction effects.
This analysis identifies confounding variables based on the seven longitudinal cohorts in analyses
conducted by Lanphear and colleagues and by Crump and colleagues and confirms maternal IQ,
HOME score, maternal education and maternal marital status at birth are “Highly Likely” confounders,
while race is a “Likely” confounder. The cohort data were reanalyzed using the methods presented
by Crump and colleagues while also considering the interaction among the identified confounding
variables. This analysis determined that confounders influence IQ estimates in a quantifiable way that
may exceed or at least obscure previously-reported effects of blood lead on IQ with blood lead lev-
els below 5mg/dL; however, limitations in the datasets make predictions of the low dose dose-
response analysis questionable.
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Introduction

Epidemiological studies are frequently used to identify likely
associations between an exposure and an outcome. Taking
these assessments to the next step of asserting causality is
much more difficult. For example, the association could be
spurious if confounding factors are not adequately accounted
for. In some cases, associations have been found to be due to
reverse causality, that is, the outcome is found to have
affected the measure of exposure. For associations that have
been well established via multiple studies, attempts are
sometimes made to derive dose-response relationships for
low exposure conditions. Such low dose extrapolation is even
more fraught with uncertainty due to confounding.

In regression analyses of epidemiological data, there can
be confusion regarding which variables are covariates and
which are confounders (Gurka 2018). For this analysis we are
using the following definitions: a covariate is a variable that
correlates with the outcome independent of the major expos-
ure variable, whereas a confounder is a variable that corre-
lates both with the outcome and with the major exposure
variable. (Figure 1). Multivariate regression can include both
covariates and confounders as independent variables to
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“correct” for the effect of these variables. In the case of con-
founders, including the confounder as an independent vari-
able only accounts for the differences in variance and will
not account for its effect on the outcome. An interaction
term between the confounder and the outcome must be
included in the regression model to account for this effect,
which is similar to the way a modifier is considered in regres-
sion modeling (Gurka 2018). The difference would be that for
a confounder, both the independent confounder and the
interaction between the confounder and the primary expos-
ure parameter should be included in the model. In the case
of the modifier only, the interaction term is necessary.

High doses of some environmental chemicals such as lead
and methylmercury have clearly been associated with
adverse effects on neurological function in children (Agency
for Toxic Substances and Disease Registry 2013, 2019;
Antunes Dos Santos et al. 2016; Caito and Aschner 2017;
Jackson 2018). In such studies, careful control for confound-
ing factors has been shown to be critical because the effects
of confounders are often stronger than the effects of the
exposure of interest in the low-to-moderate dose region
(Trask and Kosofsky 2000; Mink et al. 2004).

This is true for lead where covariates and confounders
related to parental IQ and social factors account for over 50%
of the variance in cognitive stability as compared to only
1–2% variance due to lead exposure (Bellinger and Dietrich
1994; Kaufman 2001). Concerns have been raised about the
impact of confounding on low dose extrapolation of the
effects of lead exposure on intellectual function (Wilson and
Wilson 2016). The effect of lead on intelligence quotient in
children has been the subject of numerous studies (Koller
et al. 2004), with more recent studies concluding there are
deficits associated with blood lead concentrations below
10mg/dL (Lanphear et al. 2005, 2019; Rothenberg and
Rothenberg 2005; National Toxicology Program 2012; Budtz-
Jørgensen et al. 2013; Crump et al. 2013; Pan et al. 2018;
Rocha and Trujillo 2019). Some of these studies have also
included dose-response assessments in an attempt to quan-
tify the decrements at various blood lead levels (BPbs), but
factors affecting the low dose dose-response is still an area
of active study (e.g. Desrochers-Couture et al. 2018) and
questions remain about how to accurately characterize the

associations (Health Canada 2013; Wilson and Wilson 2016).
Confounding presents a greater threat to the validity of low
dose extrapolation because the effects of lead at the lowest
doses are more likely to be weaker than the effects of the
confounders.

One publication that has been influential in the setting of
an association between measures of intelligence and low
lead exposure is the pooled-analysis conducted by Lanphear
et al. (2005). Wilson and Wilson (2016) explored limitations of
the regression models used in that pooled-analysis to
extrapolate to the low dose region of the dose-response
curve due to the existence of unrecognized and uncontrolled
confounding. Wilson and Wilson (2016) indicated that “while
the effects of higher levels of lead exposure are not disputed,
overestimation of health effects at low lead exposure has sig-
nificant implications for policy-makers trying to protect public
health through cost-effective regulations.” Even with only
limited access to the Lanphear cohort data in publications
(Lanphear et al. 2005; Crump et al. 2013), Wilson and Wilson
(2016) identified several potential confounders which may
have interaction effects, including maternal IQ, Home
Observation for Measurement of the Environment (HOME)
score, socioeconomic status (SES), parental education, birth-
weight, smoking, and race.

Our work with the full database of cohort data used by
Lanphear et al. (2005) and Crump et al. (2013) in this paper
presents a method to identify the confounding variables and
a reanalysis of the data using the interaction terms identified.
Our analysis follows the methods presented in Crump et al.
(2013) while also considering the interaction among the iden-
tified confounding variables and the BPb variables. This ana-
lysis, which is an expansion of the original regression method
shows that the interactions of these variables with the blood
lead levels have a significant effect on the predictions in the
low dose range of the dose-response analysis.

Materials and methods

Seven longitudinal studies (Table 1) make up the cohort
database that has been used in pooled-analyses to evaluate
the association between BPb concentrations in children and
the measure of their intelligence (Lanphear et al. 2005;

Outcome

Confounder

Primary 
Exposure 
Variable

Covariate
Modifier

Associated with both outcome and 
exposure

Modifies the effect of the 
exposure on the outcome

Figure 1. Relationships between variables and outcomes.
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Rothenberg and Rothenberg 2005; Crump et al. 2013). Each
of these seven studies followed a cohort of children from
birth and measured levels of lead in their blood at certain
defined times. From time to time their intellectual develop-
ment was measured along with other variables that might
affect or correlate with that development. The reader is
referred to Lanphear et al. (2005) and Crump et al. (2013) for
the details of the cohort data.

Using the IQ test values and blood lead values selected
in Crump et al. (2013), the other characteristic variables
(Table 2) reported in the cohort studies were examined to
determine if any of the variables could potentially con-
found the results reported in Lanphear et al. (2005) or
Crump et al. (2013). Several of the characteristic variables
(HOME score, maternal education, maternal IQ, maternal
alcohol use, and maternal smoking) have been defined as
site-specific due to being defined or measured in different
ways in different studies by Crump et al. (2013), and these
site-specific variables were used as part of the analyses. In
addition, the combined versions of these variables (not
site-specific) which were relied upon by Lanphear et al.
were also used to explore this issue. The exposure varia-
bles considered in the analysis (Table 3) are those
described in Crump et al. (2013), which closely correspond
to those used by Lanphear et al. (2005) with some minor
changes in the calculations. The exposure variables
included calculations of the blood lead levels for the con-
current time to the IQ test, average over lifetime, early
childhood (average up to 24months), at 24months, and
overall peak as well as the natural log transformations of
each. All were considered but only the concurrent lead
(clead) and the natural log of concurrent lead (lnc) are
presented in this paper, both for brevity and due to the
determination by Crump et al. (2013) that “concurrent BPb
was found statistically to provide the best description of

the data” and because both Lanphear and Crump found
that the exposure response is non-linear.

Once the confounders were identified, the interaction
terms that describe the confounding were added to the
other covariates in analyzing the data.

Identifying confounders

Both a correlation analysis and a linear regression method
were used to determine which of the characteristic variables
could be considered to be confounders. Empirical identifica-
tion was done considering the observed relationships
between the exposure, outcome, and potential confounders
using significance criteria (p-values less than or equal to 0.05)
and change in estimate (CIE) values of greater than or equal
to 10% (Lee and Burstyn 2016).

Correlation analyses
Correlation analyses were conducted to identify which of the
characteristic variables (Table 2) were significantly correlated
with both the reported IQ of the children and the BPb con-
centrations (the exposure variables of Table 3). A significant
correlation with both the IQ and BPb concentration provides
an indication that the characteristic variable has an effect on
both the final outcome (IQ) and the expected cause of the
final outcome (BPb). Spearman, Pearson or point biserial cor-
relation (Tate 1954) procedures provided in SAS V. 9.4 and a
SAS macro for the point biserial correlation (SAS 2007) were
used to evaluate this, with Pearson correlation used for those
variables identified as having continuous results (e.g. birth
weight, gestational age, HOME score, mother’s age, maternal
education, and maternal IQ), while Spearman’s correlation
was used for those having ordinal categorical results (e.g.
birth order) and point biserial correlation was used for the
remaining categorical variables (e.g. marital status, race, and
sex). Among the site-specific variables, some reported con-
tinuous and some categorical responses for alcohol and

Table 1. Longitudinal cohort studies.

Location Reference

Boston, Massachusetts Bellinger et al. (1992)
Cincinnati, Ohio Dietrich et al. (1993)
Cleveland, Ohio Ernhart et al. (1989)
Mexico City, Mexico Schnaas et al. (2000)
Port Pirie, Australia Baghurst et al. (1992)
Rochester, New York Canfield et al. (2003)
Yugoslavia Wasserman et al. (1997)

Table 2. Characteristic variables reported in cohort studies.

Variable name Description Type (possible values)

bo Birth order Continuous (1–9)
bwgt Birth weight Continuous
gage Gestational age Continuous
home HOME score with fewest missing Continuous – site specific
mage Mother’s age Continuous
marital Marital status at delivery Categorical (unmarried – 0; married – 1)
medu Maternal education Continuous (8–17) – site specific
momiq Maternal IQ Continuous – site specific
race Ethnicity Categorical (non-white – 0; white – 1)
sex Gender of child Categorical (male – 1; female – 2)
site_alc Alcohol use during pregnancy Categorical (Y/N for Cincinnati, Mexico, Rochester, and Yugoslavia);

continuous (all other locations) – site specific
site_cigs Tobacco use during pregnancy Categorical (Y/N for Yugoslavia); – site specific

continuous no. of cigs/day (all other locations)

Table 3. Outcome and exposure variables.

Variable name Description

iq Child’s IQ level
clead Concurrent lead (concentration measured closest to IQ test)
lnc Natural log (ln) of concurrent lead variable (clead)

CRITICAL REVIEWS IN TOXICOLOGY 817



tobacco use during pregnancy (Table 2). In these cases, the
Pearson or Spearman correlations were used where appropri-
ate for each of the individual locations. Statistical significance
was determined for both Pearson and Spearman correlations
using a t-statistic determined from the correlation coefficient
by the SAS Proc Corr procedure and a correlation was
deemed statistically significant if it had a p-value of 0.05
or less.

Regression modeling
A second analysis was conducted using the multi-linear
regression procedure SAS PROC GLM to identify confounding
variables. Using PROC GLM, the effect on the association
between a given exposure variable and the outcome (IQ) was
examined when an additional independent variable was
added to the regression. For example, in the initial regression
model using a child’s IQ (iq) and the natural log of concur-
rent lead (lnc), iq¼b0 þ b1 � lnc, b0 is the variable repre-
senting the intercept, and b1 is the estimated regression
coefficient quantifying the association between iq and lnc,
the regression coefficient. The b1, was compared to an alter-
nate regression coefficient, b̂1, estimated when a second
characteristic variable was included in the model, for
example, iq¼b0 þ b̂1 � lncþb2 � bwgt where the second
characteristic variable is the birthweight (bwgt). If the percent
change between the b1 and b̂1 estimates was greater than
±10%, then the second characteristic variable is considered
to be a confounder. Note that those characteristic variables
considered to be site-specific are evaluated by combining
the site variable (location) with the characteristic variable, for
example, iq¼ b0 þ b̂1 � lncþb2 � site� home.

Estimating the effect of identified confounders on the
dose-response modeling

After the confounders were identified, a backward stepwise
multiple regression on IQ was performed similar to that
reported in Crump et al. (2013) but with the addition of the
interaction terms and using the thirteen original variables
identified by Lanphear et al. (2005) in the stepwise procedure
(Site, HOME score, maternal education, maternal IQ, birth
weight, maternal alcohol use, maternal smoking habit, mater-
nal marital status, birth order, gender, race, mother’s age,
and gestational age). The selection for entry into the

regression was a significance of 0.10 and for staying in the
regression, the significance level was 0.15. Confounders were
included by using both the base variable and the interaction
term and were grouped so that they left the model together
(e.g. the terms for the HOME score and the interaction of the
HOME score with the BPb value – Home and Clead�Home).

The association of the BPb with IQ was examined using
two specific linear regression models developed using the
confounders. The first is a linear model using the site-specific
confounders of HOME score, and maternal education level
(years of schooling), and IQ. The second uses the same con-
founders but does not make them site-specific. This provides
an easier to use a version of the model where the effect of
changes in blood lead and the confounders can be seen.

Results

Identification of confounders

As described in both Lanphear et al. (2005) and Crump et al.
(2013), the concurrent blood lead value (clead, or lnc: natural
log of concurrent lead) was identified as the most statistically
descriptive of the exposure-response variables. The p-values
resulting from our correlation evaluation are presented in
Supplemental Table S-1 for the child’s IQ and in
Supplemental Tables S-2a and S-2b for the concurrent lead
and the natural log of the concurrent lead measures,
respectively.

The variables HOME score (home), marital status (marital),
mother’s education (medu), and mother’s IQ (momiq) were iden-
tified as potential confounders due to their significant correlation
with both the child’s IQ (as shown in Supplemental Table S-1)
and natural log of concurrent lead (lnc) and concurrent lead con-
centrations (as shown in Supplemental Tables S-2a and b) for at
least four of the seven sites. When using regression modeling
(see Supplemental Tables S-3) to evaluate the possible confound-
ers, the characteristic variables ethnicity (race), HOME score
(home), marital status (marital), mother’s education (medu), and
mother’s IQ (momiq), were identified as confounders based on
having b estimate differences greater than 10 percent.

Table 4 provides a summary of the confounder identifica-
tion determined by covariate analysis, regression analysis,
and overall, and uses a designation of “Highly Likely” to indi-
cate that the characteristic variable was identified as a poten-
tial confounder in both the correlation and regression

Table 4. Identified confounders by regression and correlations.

Description Potential identified by correlation Potential confounders identified by regression Final selection of confounders

Birth order No No No
Birth weight No No No
Gestational age No No No
HOME score Yes Yes Highly Likely
Mother’s age No No No
Marital status at delivery Yes Yes Highly Likely
Maternal education Yes Yes Highly Likely
Maternal IQ Yes Yes Highly Likely
Ethnicity No Yes Likely
Gender of child No No No
Alcohol use during pregnancy No No No
Tobacco use during pregnancy No No No

Gray highlight indicates variable has been identified as Likely or Highly Likely to be confounders.
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analyses. A child’s ethnicity was deemed to only be a “Likely”
confounder since it was not selected by both correlation and
regression; as a consequence, it was not included further as a
confounder in this analysis.

Identification of dose-response model

The backward stepwise multiple regression on IQ was con-
ducted using the 13 original variables with the addition of
the interaction terms for those variables identified as signifi-
cant confounders (i.e. “Highly Likely” in Table 4). The variable
for “site” plus the twelve variables listed in Table 4 are
included at the start of the model development process to
select the variables that are significant contributors to the
estimate of the child’s IQ. The four variables that were con-
sidered to be “Highly Likely” confounders based on the ana-
lysis reported in Table 4 were included in the model as both
a single variable and an interaction term (e.g. momiq and
momiq� BPb) with both terms considered together when
determining if they should remain in the model. The back-
ward selection process in SAS Proc GLM was used to deter-
mine that the variables that are significant contributors to
the estimate of a child’s IQ were site, birth bodyweight,
mother’s IQ, mother’s education level, mother’s tobacco use,
HOME score, and gender. The two characteristic variables
removed in the backward selection process (mother’s marital
status at delivery and mother’s alcohol use) did not have a
significant contribution to the variation in IQ when used in
conjunction with the rest of the characterization variables.
The backward selection process selected three confounders
(mother’s IQ, mother’s education level, and HOME score) for
inclusion in the final model.

Interaction effects between confounders

Using both the linear and non-linear models with concurrent
lead values, an estimate of the amount of change in the
child’s IQ can be calculated for each of the sites based on
the average values for the confounder variables (HOME score,
mother’s education, and mother’s IQ) at that site which were
included in the final model. Table 5 shows the range of

values for the different confounders and reported children’s
IQ by sites. Note that the highest average child IQs reported
by site were at a location with the highest mother’s IQ and
maternal education level (Boston), and the lowest occurred at
the locations with the lower HOME scores, education levels,
and maternal IQs (Cincinnati, Cleveland, Rochester,
and Yugoslavia).

Table 6 shows the site-specific regression model results
for BPb and the blood lead-associated variables identified as
confounders. This table contains the parameter specific b val-
ues which provide the strength of the association between
each parameter and the child’s IQ. To calculate the model-
estimated change in IQ for a specific site, a method similar to
that reported in Mink et al. (2004) was used, where the par-
ameter values supplied in Table 6 are combined with the
average values for the confounders in Table 5. For example,
the change in IQ expected for the linear model for the
Boston site if BPb were 1 mg/dL is computed as follows:

Change in IQ ¼ BPb�
�
0:0815þ �0:0033�mother’s IQð Þ

þ �0:0634�mother’s education levelð Þ
þ 0:0203� HOME scoreð Þ

�

(1)

Using the average values supplied in Table 5 for the
Boston site of 122.98 for the mother’s IQ, 15.05 for the moth-
er’s education level, and 37.02 for the HOME score, the
change in IQ for an increase of 1 mg/dL in the BPb is calcu-
lated to be a decrease of 0.52 points.

Similarly, the change in IQ for the log-linear model
would be:

Change in IQ ¼ Ln ðBPbþ 1Þ
�
�
1:1063þ ð0:0014�mother’s IQÞ

þ ð0:5428�mother’s education level
�

þ ð�0:3444� HOME scoreÞ

(2)

For this model using the same average values from
Table 5 for the mother’s IQ, mother’s education level, and

Table 5. Summary of confounders and child IQ values by site and overall.

Site N Gender

Average values for each Site

HOME score Maternal education level Maternal IQ

Child’s IQ reported

Concurrent BPbMinimum Mean Maximum

Boston 67 Male 37.02 15.05 122.98 82 112.5 150 5.976
67 Female 80 117.1 150 6.364

Cincinnati 113 Male 32.44 11.19 75.20 50 85.4 114 8.927
108 Female 63 88.7 114 7.831

Cleveland 78 Male 38.07 10.61 73.33 55 85.7 123 15.538
65 Female 58 90.0 123 15.592

Mexico 70 Male 30.58 11.29 93.87 85 109.6 137 7.393
72 Female 79 106.7 127 8.632

Port Pirie 149 Male 42.60 10.59 94.38 53 107.2 133 13.496
173 Female 53 104.7 146 13.829

Rochester 92 Male 26.75 12.20 81.03 55 82.8 146 5.334
91 Female 56 87.1 124 4.873

Yugoslavia 116 Male 29.97 8.86 87.36 49 74.1 122 23.627
115 Female 50 74.3 116 18.084

All Sites 1376 34.49 11.12 88.89 49 94.0 150 11.776
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HOME score, the calculated decrease in the child’s IQ for
Boston is 2.29 points.

The results of the linear and log-linear computations,
including the upper and lower confidence limits, for each site
are presented in Table 7. The average estimated value for
the change in IQ associated with a BPb of 1 mg/dL for the
average child (i.e. at the average value for the confounders)
ranges from �0.84 to �0.13 IQ points for the linear model
and to �4.63 to �1.16 points for the log-linear model.

Impact of confounders on IQ

To see the impact of the confounders on changes in IQ,
Table 8 shows the effect of adjusting each confounder down
from the average (presented in Table 5) by one point and
Table 9 shows the effect of adjusting each confounder up by
one point from the average when the BPb is at 1 mg/dL. The
effect of decreasing the confounders on the linear model’s
estimates was to change the estimated decline in IQ from a
range of �0.84 to �0.13 to �1.4 to �0.3 because of lowered
mother’s IQ, �2.71 to 0.58 due to lowered mother’s educa-
tion level, and �1.78 to �0.28 for lowered HOME score.
Similarly, the log-linear model predicts larger changes in the

child’s IQ when the mother’s IQ (�5.09 to �1.38), mother’s
education level (�4.31 to �0.11), or HOME score (�6.65 to
�1.16) are used in the equation at 1 point below the average
values with a BPb of 1 mg/dL. Conversely, the range of pre-
dicted values when the confounders are increased by one
point over the average changes for the linear model to
mother’s IQ (�0.47 to 0.27), mother’s education level (�1.31
to 1.66), or HOME score (�0.41 to 0.74) shows that a single
point of increase over the average will override the effect of
BPb of 1 mg/dL at some of these sites. Since the values of
standard IQ have a standard deviation of 15 points, a change
of 1 point would be considered not statistically different
from the average. It is apparent that the uncertainty in all
the average confounder values (mother’s IQ, mother’s educa-
tion levels and Home scores) would also introduce uncer-
tainty in the model-predicted changes to IQ associated with
BPb levels. The log-linear model does not show as much
change in IQ with changes in the confounders but does
change from the initial range with only the BPb of 1 mg/dL
(�4.63 to �1.16) to ranges of (�4.68 to �0.94) for mother’s
IQ, (�5.69 to 0.59) for mother’s education level, and (�3.86
to �0.92) for HOME scores increased one point
above averages.

Supplemental Tables S-4 and S-5 show a more complete
version of Tables 8 and 9 with BPb values ranging from 0 to
10 and changes in the confounders of mother’s IQ, mother’s
education level, and HOME score varying from a decrease of
up to 10 to an increase of up to 10.

Similar tables are provided for the results of using non-
site-specific variables for the confounders with parameter val-
ues in Table 10, the results of changes in BPb only in Table
11, and the estimated effect on IQ when the BPb is 1 mg/dL
and the confounding variable is adjusted either up or down
one point (Table 12) from the overall average reported in

Table 6. Model results for blood lead (BPb) and blood lead-associated confounding variables – site-specific.

Variable Site

Model 1 – linear model Model 2 – log-linear Ln (BPb þ1) model

Variable
value

Variable for
interaction with BPb
(confounder� BPb)

Variable
value

Variable for interaction
with BPb

(confounder� ln(BPb þ 1))

BPb 0.0815 1.1063
Mother’s IQ Boston 0.0593 �0.0033 0.0173 0.0014

Cincinnati 0.2660 0.0033 0.2032 0.0438
Cleveland 0.1787 0.0014 �0.1360 0.1250
Mexico 0.3114 0.0018 0.1606 0.0807
Port Pirie 0.3905 0.0040 0.3791 0.0245
Rochester 0.5986 �0.0398 0.8287 �0.2701
Yugoslavia 0.1648 �0.0009 0.2044 �0.0198

Mother’s education level Boston 2.2477 �0.0634 0.8630 0.5428
Cincinnati 0.3027 �0.1082 1.6417 �1.0877
Cleveland �0.0480 0.0734 �0.8020 0.7044
Mexico �0.9896 0.1280 �1.5845 0.7699
Port Pirie 0.5971 �0.0225 2.8773 �0.9897
Rochester �0.7781 0.3074 �2.6754 2.0643
Yugoslavia 0.7935 �0.0118 1.3653 �0.2924

HOME score Boston 0.7355 0.0203 1.6023 �0.3444
Cincinnati 0.0923 0.0172 �0.0160 0.1057
Cleveland 1.3010 �0.0389 2.4643 �0.6414
Mexico 0.6066 �0.0646 1.4045 �0.6230
Port Pirie 0.6944 �0.0082 0.2519 0.1116
Rochester 0.4875 �0.0539 0.8663 �0.4048
Yugoslavia 0.8175 �0.0010 0.7851 0.0084

Highlighted cells indicate variable values that are statistically significantly different from zero.

Table 7. Estimates of change in IQ associated with BPb ¼ 1 mg/dL.

Site
Model 1 – linear model Model 2 – log-linear model

Mean (95% LCL, 95% UCL) Mean (95% LCL, 95% UCL)

Boston �0.52 (�0.60, �0.45) �2.29 (�2.81, �1.77)
Cincinnati �0.32 (�0.36, �0.29) �3.01 (�3.71, �2.32)
Cleveland �0.52 (�0.60, �0.44) �4.63 (�6.34, �2.92)
Mexico �0.28 (�0.36, �0.20) �1.16 (�2.30, �0.02)
Port Pirie �0.13 (�0.16, �0.09) �1.60 (�2.44, �0.77)
Rochester �0.84 (�0.90, �0.78) �4.45 (�5.02, �3.88)
Yugoslavia �0.13 (�0.14, �0.12) �2.05 (�2.34, �1.77)

LCL: lower confidence limit; UCL: upper confidence limit; mg/dL: microgram
per deciliter.
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Table 5. Since the model estimates reported in Tables 10–12
are based on a model that does not contain site-specific vari-
ables, the overall average values for the confounders (Table
5) are used. This model is easier to apply and can be used to

give a single estimate instead of a range across the sites
when confounders are used. Table 11 shows the estimate for
the change in IQ based on four different levels of BPb. For
1 mg/dL BPb, the estimate for change in IQ is �0.203 for the

Table 8. Estimates of change in IQ associated with BPb ¼ 1 mg/dL and decrease from the average in the other confounders of
1 point eacha.

Confounder Site
Model 1 – linear model Model 2 – log-linear model

Mean (95% LCL, 95% UCL) Mean (95% LCL, 95% UCL)

Mother’s IQ Boston �0.58 (�0.65, �0.51) �2.31 (�2.81, �1.80)
Cincinnati �0.59 (�0.63, �0.55) �3.25 (�3.95, �2.54)
Cleveland �0.70 (�0.77, �0.63) �4.58 (�6.22, �2.94)
Mexico �0.59 (�0.66, �0.52) �1.38 (�2.51, �0.24)
Port Pirie �0.52 (�0.56, �0.48) �2.00 (�2.85, �1.15)
Rochester �1.40 (�1.46, �1.34) �5.09 (�5.65, �4.53)
Yugoslavia �0.30 (�0.31, �0.29) �2.24 (�2.53, �1.95)

Mother’s education level Boston �2.71 (�2.72, �2.69) �3.53 (�3.31, �3.74)
Cincinnati �0.52 (�0.59, �0.44) �3.90 (�3.54, �4.25)
Cleveland �0.54 (�0.62, �0.47) �4.31 (�2.71, �5.91)
Mexico 0.58 (0.58, 0.59) �0.11 (�1.08, 0.86)
Port Pirie �0.70 (�0.86, �0.54) �3.79 (�3.95, �3.64)
Rochester �0.37 (�0.38, �0.36) �3.20 (�3.68, �2.72)
Yugoslavia �0.91 (�0.93, �0.90) �3.22 (�3.42, �3.01)

HOME score Boston �1.28 (�1.36, �1.20) �3.65 (�4.22, �3.09)
Cincinnati �0.43 (�0.46, �0.41) �3.07 (�3.73, �2.40)
Cleveland �1.78 (�1.85, �1.71) �6.65 (�8.35, �4.95)
Mexico �0.28 (�0.36, �0.20) �1.16 (�2.30, �0.02)
Port Pirie �0.81 (�0.83, �0.80) �1.93 (�2.66, �1.21)
Rochester �1.27 (�1.32, �1.23) �5.03 (�5.58, �4.49)
Yugoslavia �0.95 (�0.96, �0.94) �2.84 (�3.13, �2.56)

aThe effect of increasing the blood lead level while also decreasing the confounder (mother’s IQ, mother’s education level or
Home score) by one point.

Table 9. Estimates of change in IQ associated with BPb ¼ 1 mg/dL and increases from the averages in the other confounders
of 1 point eacha.

Confounder Site
Model 1 – linear model Model 2 – log-linear model

Mean (95% LCL, 95% UCL) Mean (95% LCL, 95% UCL)

Mother’s IQ Boston �0.47 (�0.55, �0.39) �2.27 (�2.79, �1.75)
Cincinnati �0.06 (�0.09, �0.02) �2.78 (�3.45, �2.11)
Cleveland �0.34 (�0.42, �0.26) �4.68 (�6.44, �2.92)
Mexico 0.04 (�0.05, 0.12) �0.94 (�2.09, 0.20)
Port Pirie 0.27 (0.24, 0.30) �1.21 (�2.01, �0.41)
Rochester �0.28 (�0.34, �0.22) �3.81 (�4.37, �3.24)
Yugoslavia 0.03 (0.03, 0.04) �1.86 (�2.14, �1.59)

Mother’s education level Boston 1.66 (1.66, 1.67) �1.05 (�1.49, �0.60)
Cincinnati �0.13 (�0.14, �0.12) �2.12 (�2.65, �1.60)
Cleveland �0.49 (�0.55, �0.44) �4.94 (�5.73, �4.15)
Mexico �1.14 (�1.22, �1.05) �2.21 (�3.33, �1.09)
Port Pirie 0.45 (0.39, 0.51) 0.59 (0.48, 0.69)
Rochester �1.31 (�1.32, �1.30) �5.69 (�6.16, �5.22)
Yugoslavia 0.65 (0.65, 0.65) �0.89 (�1.15, �0.63)

HOME score Boston 0.23 (0.20, 0.26) �0.92 (�1.33, �0.52)
Cincinnati �0.22 (�0.25, �0.18) �2.95 (�3.65, �2.26)
Cleveland 0.74 (0.68, 0.81) �2.61 (�4.25, �0.97)
Mexico �0.28 (�0.36, �0.20) �1.16 (�2.30, �0.02)
Port Pirie 0.56 (0.53, 0.59) �1.27 (�2.12, �0.42)
Rochester �0.41 (�0.47, �0.34) �3.86 (�4.44, �3.29)
Yugoslavia 0.68 (0.68, 0.68) �1.26 (�1.52, �1.00)

aThe effect of increasing the blood lead level while also increasing the confounder (mother’s IQ, mother’s education level or
HOME score) by one point.

LCL: lower confidence limit; UCL: upper confidence limit; mg/dL: microgram per deciliter.

Table 10. Model results for blood lead (BPb) and blood lead-associated variables – non-site specific.

Variable

Model 3 – linear model Model 4 – log-linear Ln (BPb þ 1) model

Variable
value

Variable for interaction with
BPb (confounder� BPb)

Variable
value

Variable for interaction with
BPb (confounder� ln(BPb þ 1))

BPb �0.1247 �4.945
Mother’s IQ 0.296 �0.0023587 0.283 �0.0003
Mother’s education level 0.517 �0.0087 0.3967 �0.0051
HOME score 0.4745 0.0023 0.3789 0.0437
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linear model and �2.36 for the log-linear model when the
confounders are set at an average (both indicate a decrease
in the child’s IQ). However, if the confounders are increased
by one point above average (Table 12), there is an estimated
increase in the child’s IQ of 0.092, 0.307, and 0.274 points
based on larger than average mother’s IQ, mother’s educa-
tion level, and HOME score, respectively, for the linear model
but still a decrease in child’s IQ of 2.08, 1.96, and 1.95 IQ
points for the log-linear model.

Using the models to predict the amount of change in IQ
with differing levels of BPb and changes in the confounders,
Supplemental Table S-4 shows that for the linear non-site-
specific model, the changes occur in a logical manner.
Negative changes in the confounders (e.g. lower mother’s IQ,
education level, and HOME score) result in negative changes
to the IQ even without BPb and with BPb those effects are
magnified. However, the log-linear non-site-specific model,

predicts that only an increase of 10 in the mother’s IQ, or
7–10 years in the mother’s education level were able to
offset even 1 mg/dL in the BPb. The site-specific table
(Supplemental Table S-5) is even more problematic as it not
only shows the range of possible values, but the Cleveland,
Mexico, and Rochester sites show a negative relationship
between increases in the mother’s education level and IQ
even in the absence of BPb for both the linear and log-linear
models. In addition, the log-linear model shows a negative
relationship between IQ and increasing HOME score for
Cincinnati and mother’s IQ for Cleveland. Such relationships
are not logical, suggesting that the log-linear model is not
providing a reliable indication of the influence of confound-
ing variables on predicted IQ. Note that both the linear and
log-linear models show a negative relationship between IQ
and increasing mother’s education level for Cleveland,
Mexico City, and Rochester indicating that mother’s educa-
tion levels may have been poorly defined across sites. Table
13 provides goodness of fit information for all 4 models
reported in this analysis.

Comparison to Crump and colleagues’ and Lanphear
and colleagues’ Results

Estimates of a child’s IQ deficit due to exposure to a blood
lead concentration of 10 mg/dL are presented in Table 14 for

Table 11. Estimates of change in IQ associated with specified BPb and con-
founders at the average, non-site specific models.

BPb mg/dL
Model 3 – linear model Model 4 – log-linear model

Mean (95% LCL, 95% UCL) Mean (95% LCL, 95% UCL)

1 �0.203 (�0.205, �0.201) �2.36 (�2.45, �2.28)
2.5 �0.507 (�0.512, �0.503) �4.27 (�4.40, �4.14)
5 �1.015 (�1.022, �1.008) �6.11 (�6.26, �5.96)
10 �2.030 (�2.036, �2.024) �8.18 (�8.33, �8.03)

LCL: lower confidence limit; UCL: upper confidence limit; mg/dL: microgram
per deciliter.

Table 12. Estimates of change in IQ associated with BPb ¼ 1mg/dL and decreases or increases in the other confounders of 1 point each
from the averagea.

Change in confounder value Confounder
Model 3 – linear model Model 4 – log-linear model

Mean (95% LCL, 95% UCL) Mean (95% LCL, 95% UCL)

One point below average Mother’s IQ �0.498 (�0.501, �0.495) �2.65 (�2.72, �2.57)
Mother’s education level �0.713 (�0.719, �0.706) �2.76 (�2.83, �2.70)
HOME score �0.680 (�0.684, �0.675) �2.77 (�2.86, �2.68)

One point above average Mother’s IQ 0.092 (0.085, 0.099) �2.08 (�2.17, �1.99)
Mother’s education level 0.307 (0.304, 0.310) �1.96 (�2.04, �1.88)
HOME score 0.274 (0.272, 0.275) �1.95 (�2.03, �1.88)

aMother’s IQ is 1 point lower or higher than overall average in Table 5.
LCL: lower confidence limit; UCL: upper confidence limit; mg/dL: microgram per deciliter.

Table 13. Fit information for comparison of models.

Model type
Transformation on
Concurrent BPb n Coef. (b) (95% CI) p-Value R2

Site-specific variables for maternal IQ, maternal education,
HOME score, and maternal tobacco use

linear 1376 0.081 (�0.517, 0.679) 0.7893 0.659
Ln(BPb þ 1) 1376 1.106 (�8.277, 10.489) 0.8171 0.660

Only maternal tobacco use site-specific linear 1376 �0.125 (�0.545, 0.295) 0.5601 0.635
Ln(BPb þ 1) 1376 �4.945 (�10.547, 0.657) 0.0836 0.638

aAdjusted for site, HOME score, birth weight, maternal IQ, maternal education, maternal tobacco use, and gender also for confounders mother’s age, mother’s
education and HOME score.

CI: confidence interval; b: beta coefficient; R2: R-squared.

Table 14. Estimates of deficit in IQ from exposure to 10mg/dL from different analyses.

IQ deficits at 10 mg/dL (95% CI)

Model This analysis Crump et al. (2013)a Lanphear et al. (2005)b Lanphear et al. (2019)c

Linear 2.03 (2.02, 2.04) 1.7 (0.9, 2.5)
Log-linear 8.18 (8.03, 8.33) 7.9 (5, 10.9) 6.2 (3.8, 8.6) 6.4 (3.9, 8.8)
aAs reported in Table 5 of Crump et al. (2013).
bCalculated from values reported in Lanphear et al. (2005) in Table 4 adjusted estimated for b for the concurrent model
as (b�LN(10þ 1)).

cCalculated from values reported in Lanphear et al. (2019) in Table 4 adjusted estimated for b for the concurrent model
as (b�LN(10þ 1)).
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this analysis, as well as, the Crump et al. (2013) and Lanphear
et al. (2005, 2019) analyses. Each of these represents the
mean adjusted changes in the IQ score. The concurrent
blood lead model selected by Lanphear et al. (2005, 2019)
included the covariates HOME score, birth weight, maternal
IQ, and maternal education. The model presented in Crump
et al. (2013) was adjusted for site, HOME score, birth weight,
maternal IQ, maternal education, maternal alcohol use,
maternal tobacco use, and birth order. Our model included
the covariates of site, birth bodyweight, mother’s tobacco
use, and gender, along with the three confounders (mother’s
IQ, mother’s education level, and HOME score).

The estimates of a child’s IQ deficit at BPb¼ 10 lg/dL as
determined in this analysis are similar to those in Crump
et al. (2013) and Lanphear et al. (2005, 2019) with the IQ def-
icit and confidence limits within the range of confidence lim-
its specified in the other analyses.

Discussion and conclusion

Pooled and meta-analyses (weighted pooled analysis) of epi-
demiological studies are increasingly being used to demon-
strate low dose adverse effects; however, the strong
influence of multiple confounders calls into question the reli-
ability of some of those analyses. In any case where uncon-
trolled confounding could occur, an expansion of typical
regression analyses is needed to examine the effect of add-
ing additional variables on the exposure parameter.
Whenever the outcome variable has multiple factors that dir-
ectly affect the incidence, and some of those factors also
influence the exposure variable, such confounding
may occur.

This study examines a source of uncertainty that has been
inadequately addressed in prior studies using regression
models with epidemiological data to extrapolate to the low
dose region of the dose-response curve. Existing regression
models typically account for covariation with multiple charac-
teristic variables, but often incorrectly describe accounting
for such interactions as addressing “confounding.” Such
regression models do not account for the existence of unrec-
ognized and uncontrolled confounding, where a characteris-
tic variable may distort the measured association between an
exposure variable and an outcome.

We specifically examine factors that may have affected the
reported dose-response for measures of intelligence and low
lead exposures conducted by Lanphear et al. (2005) and
Crump et al. (2013), who calculated dose-response relation-
ships for BPb levels less than 10 mg/dL. Our analysis builds on
an analysis by Wilson and Wilson (2016) that identified sev-
eral potential confounders that may have interaction effects.

The initial phase of our study was the development of
methods to identify characteristic variables likely to be con-
founders, and the application of these methods to a dataset
used to predict low dose effects of lead exposure in young
children. In addition to the correlation analysis used in
Wilson and Wilson (2016) to determine confounders, the
analyses described here included regression analysis to con-
firm that the addition of the possible confounder to the

regression resulted in at least a 10% change in the b value
associated with the BPb (Supplemental Tables S-3). Finally,
the possible covariates and confounders were used in a
selection regression analysis to determine the parameters
used for the analysis.

Based on access to a subset of the data used by Lanphear
et al. (2005) and Crump et al. (2013), Wilson and Wilson
(2016) considered maternal IQ, HOME score, SES, parental
education, birthweight, smoking, and race as characteristic
variables which may have interaction effects with the blood
lead variable. These variables were defined as possible con-
founders, which is a term that is used loosely in many publi-
cations. Often what is termed a confounder is simply a
covariate with a high correlation to the independent variable
(e.g. IQ) but with no correlation to the main exposure term
(e.g. blood lead levels). Using the full dataset, this analysis
confirms that maternal IQ, HOME score, marital status at
delivery, and maternal education are “Highly Likely” con-
founders, while the race is a “Likely” confounder.

Therefore, any analysis of the cohort data to predict low
dose effects of lead exposure in young children using the
methods presented in Crump et al. (2013) and Lanphear
et al. (2005, 2019) should consider the interactions among
the confounding variables identified in this analysis, particu-
larly HOME score, mother’s education, and mother’s IQ as
these were identified as potential confounders in both the
correlation analysis and regression modeling. The problem of
differences in data collected at different sites was accommo-
dated by using site-specific variables as was done in Crump
et al. (2013). The method can also be applied to multiple
exposure measures as a means of examining exposure dur-
ation directly, for example, Crump et al. (2013) included con-
current BPb, peak BPb, BPb at 24months, mean lifetime
weighted BPb, and early (6months to 24months) mean
weighted BPb as exposure measures.

Both linear and log-linear models were used in this ana-
lysis to be consistent with other analyses (Lanphear et al.
2005; Jusko et al. 2008; Crump et al. 2013). However, it is
noted by Wilson and Wilson (2016) that “If the best fit linear
regression shows a negative association between IQ and log
Blood Lead Levels (BLL), it will always transform to an expo-
nentially declining curve (a supralinear relationship) if plotted
against BLL. If that is inconsistent with physiological explana-
tions, the assumption of a linear regression should be reex-
amined, and effort directed to finding a threshold.” There is
no doubt that there is a negative relationship between lead
and IQ; however, given the relatively small effects of lead on
IQ at low doses as compared with other factors affecting IQ,
it is difficult to believe that the relationship between very
low levels of lead and IQ is as large as would be reflected by
these log-linear relationships.

In addition, the negative relationships predicted by the
site-specific models between increases in the confounders
and IQ are inconsistent with studies of the influence of those
variables on IQ. Child IQ has been shown to be strongly
affected by the mother’s education, mother’s IQ, and HOME
score in numerous studies (Bradley et al. 1993; Bacharach
and Baumeister 1998; Tong et al. 2007; Alati et al. 2008;
Eriksen et al. 2013). Tong et al. (2007) reported that a 10-unit
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increment in maternal IQ led to increases in cognitive devel-
opment by 2.9 to 4.8 points, and a 10-unit increment in
HOME score led to increases in cognitive development by 4.2
to 9.0 points, after adjustment for confounding factors.
Consequently, a model that predicts negative relationships is
not providing accurate predictions for these variables.

Note that when the site-specific models are used the b
values for the BPb are positive (Table 6) which indicates it is
only through the effects in the interaction terms that
changes in the BPb decrease the IQ. In contrast, in the non-
site-specific model, the b values for the BPb are negative
(Table 10) but having a value of a confounder one point or
more above average cancels the negative effect of BPb at
one mg/dL for the linear model. For the log-linear model,
even increases of 10 points in the mother’s IQ is insufficient
to counteract the effect of more than 1 mg/dL BPb (see
Supplemental Table S-4).

A key limitation of this method is related to the data
needs. The application of this approach requires access to
full data sets, and the studies included must have reported
robust exposure data with many characteristic variables. In
addition, there must be a large number of subjects with BPb
in the concentration ranges of interest for dose-response pre-
diction as there may need to be a number of regression
parameters estimated by the regression equations. In this
analysis we had access to the full datasets; however, there
are relatively few records in the low dose region with blood
lead levels below 5 mg/dL. Our analysis was also limited by
the fact that the covariates and confounders were not uni-
formly reported for all of the cohorts (e.g. tobacco and alco-
hol use during pregnancy and ethnicity). Another limitation is
that the only socio-economic factor available was the HOME
score. Additional socio-economic variables such as the cate-
gorized yearly income used by Jusko et al. (2008) could also
prove useful, as would reliable measurement of parental IQ.
Considering the large role of parental IQ in child IQ, this is a
crucial factor. The IQ of one parent accounts for 17.6% of the
variation in the child’s IQ, and the IQs of both parents
account for 25% of the variation in the child’s IQ (Kaufman
2001). Studies of lead and child IQ seldom report father’s IQ,
but testing both mother’s and father’s IQ increases the over-
lap between parent and child IQ by 42% (Kaufman 2001).
Taken together, these limitations cause us to conclude that
the available datasets do not support a reliable dose-
response analysis for effects of blood lead levels less than
5mg/dL on IQ.

Another concern in the low dose extrapolation is the
uncertainty associated with the reliability of the IQ measures
for both child and mother. Measures of IQ are not accurate
to one point. Uncertainty in the mother’s actual IQ could
result in a range of predicted child IQs at any given BPb that
is larger than the change in IQ brought about by a low incre-
ment in BPb. Thus, confounding by the mother’s IQ may be
magnified by the uncertainty associated with this measure.

Our model does not address the issue of joint confound-
ing by multiple variables. Future development of this model
should explore approaches that consider joint confounding.
The key confounders identified in this study (mother’s educa-
tion, mother’s IQ and HOME score) are not independent of

each other, which should be taken into consideration in any
analysis of joint confounding.

The approach used in this study to expand typical regres-
sion analyses to identify previously overlooked interaction
effects could increase the accuracy and reliability of risk cal-
culations based on low-dose dose-response estimates. The
methods used to identify the covariates in this approach are
general enough that they can be applied to other studies
using the study-specific variables when covariates are avail-
able and confounding with one or more covariates is
expected. Other examples where the measured association
between an exposure variable and an outcome at low doses
could be distorted by an effect of a third variable include
lead exposure and cardiovascular disease (see Cox 2020), fine
particulate matter and cardiovascular disease or pulmonary
function, and aggravation of asthma by ozone and fine par-
ticulate matter.
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