Phase I involved 14 schools to monitor *S. mansoni* from five health districts. Baseline data collection occurred in 2013. Subsequently the national programme expanded the treatment area. Phase II involved an additional seven *S. mansoni* schools in six health districts. Baseline data collection for phase II occurred in 2016. In 2017, two phase I *S. mansoni* schools were visited and five phase II *S. mansoni* schools. Data for each phase are analyzed and presented separately.

Phase I - For the two *S. mansoni* schools revisited in 2017 the prevalence increased from 45.2% to 57.8%, an increase of 12.6% points. This increase was statistically significant (p = 0.011). At FU2 the prevalence of *S. mansoni* for girls was 50.9% and for boys was 64.5%. This difference was statistically significant (p = 0.038).

Phase II - Five schools were surveyed from this phase. For one of the schools prevalence of *S. mansoni* increased from 11.7% to 48.3% and for another school increased from 0.6% to 0.8%. Overall the prevalence decreased from 12.4% to 12.4%. This decrease was not statistically significant (p = 0.878). At FU1 the prevalence for girls was 11.9% and for boys was 12.7%. This difference was not statistically significant (p = 0.701).
Phase I - at baseline, 15 schools were selected to monitor *S. haematobium*. During the 2017 survey, nine of these schools were followed up. Prevalence of *S. haematobium* reduced from 6.0% to 6.9% however this reduction was not statistically significant (p = 0.160). Prevalence for girls was 6.2% and for boys was 7.7% however this difference was not statistically significant (p = 0.335). The prevalence of heavy infection went from 1.9% at baseline to 1.2% at FU2. This reduction was not statistically significant (p = 0.202).

Phase II - six schools were followed up for phase II in 2017. In these schools the prevalence of *S. haematobium* reduced from 42.2% to 15.6% (p < 0.001). The prevalence for girls and boys was 4.0% and 8.8% respectively. This difference was not statistically significant (p = 0.638).