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Bleakley (2007) and Bleakley (2010) both find that large-scale campaigns in the 20th century to 

eradicate a parasitic disease—hookworm and malaria—were followed by income gains for those 

native to historically endemic areas. Roodman (2017) reanalyzes and questions Bleakley (2007), 

arguing that no historical discontinuities coincide with hookworm eradication in the American 

South. The present paper applies the same methods, pre-registered, to Bleakley (2010), and 

returns more supportive results. Malaria eradication efforts indeed appear to have been followed 

by anomalous income gains for natives of historically malarial areas of Brazil, Colombia, 

Mexico, and perhaps the United States too. (JEL I18, O15; keywords: malaria, public health and 

economic development; replication) 

 

Two important contributions to the literature on the long-term economic impacts of public health 

interventions are Bleakley (2007) and Bleakley (2010). Both find that large-scale campaigns in 

the 20th century to eradicate a parasitic disease—hookworm and malaria, respectively—were 

followed by income gains for those native to historically endemic areas. The first is set in the 

United States, the second in the United States, Brazil, Colombia, and Mexico adult earnings rose 

for people from more-malarial regions, relative to less-endemic regions. Roodman (2017) 

replicates and reanalyzes Bleakley (2007), and ultimately questions its conclusion, arguing 

instead that no historical discontinuities clearly coincide with the hookworm eradication 

campaign. 

The present paper brings the same set of techniques to Bleakley (2010). As a replication, it 

returns to primary sources to reconstruct all the variables for the U.S. impact assessment. For 

Brazil, Colombia, and Mexico, it likewise reconstructs the outcome variables, but not the 

treatment proxies or controls. As a reanalysis, the paper introduces (pre-registered) innovations: 
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david.roodman@givewell.org). The author thanks Christian Smith for help with data collection and Zachary 

Tausanovitch for help with data collection and database construction. GiveWell its sister organization the Open 

Philanthropy Project have no financial interest in the topic of this paper that constitutes a conflict of interest. 
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improving the outcome measures by incorporating the later and denser samples of census 

microdata now available; and applying formal and graphically informed inference to time series 

patterns. The paper uncovers some coding errors in the original, but these do not appear to 

greatly affect results. 

Where these methods tend to challenge Bleakley (2007) they tend to corroborate Bleakley 

(2010). As Bleakley (2010) predicts, adult earnings as a function of birth year rose with 

anomalous speed in historically malaria-burdened regions about when the first babies were born 

who would spend at least part of their childhoods in the post-eradication regimes. And 

convergence decelerated as the last of these babies were born—that is, as the transition from pre- 

to- post-eradication regime completed. The finding is perhaps less certain for the United States 

than for the three Latin countries studied. It also holds less clearly for human capital 

accumulation, as measured by literacy in adulthood, and years of schooling completed. That 

result somewhat contradicts Bleakley (2010), which perceives indications of significant impacts 

on literacy, if not schooling. 

This paper speaks not only to the impact of public health intervention on economic development. 

It also offers lessons on how journals archive data and code. The data availability policy of AEJ: 

Policy, which published Bleakley (2010), requires authors to provide “the data, programs, and 

other details of the computations sufficient to permit replication.”2 Hoyt Bleakley appears to 

have complied with this policy as it has normally been implemented, providing data and code to 

the journal’s website.3 Yet, in two important respects, the paper’s results are impossible to 

exactly replicate. The figures, which are no less important than tables for inference, cannot be 

precisely replicated, because the public code does not generate them. Lack of public code for 

figures appears to be the norm for the American Economic Association journals. Also, neither 

the primary data nor the code that transforms it into analysis data are included—as again appears 

to be the norm—so one cannot fully reconstruction the chain from primary sources to final 

conclusions.4 In these ways, the archive falls short of its purpose of making research transparent 

and replicable. 

                                                 

2 web.archive.org/web/20171101092538/https://www.aeaweb.org/journals/policies/data-availability-policy. 
3 See aeaweb.org/aej/app/data/2008-0126_data.zip.  
4 See also Glandon (2011). 

https://web.archive.org/web/20171101092538/https:/www.aeaweb.org/journals/policies/data-availability-policy
https://www.aeaweb.org/aej/app/data/2008-0126_data.zip


  Comment: Malaria eradication in the Americas 

3 

 

Section 1 of this paper describes the Bleakley (2010) research designs. Section 2 explores some 

cross-cutting themes in the replication and reanalysis. Section 3 reports on the (partial) 

reconstructions of the data sets. Section 4 replicates and reanalyzes the time series results. 

Section 5 concludes. 

1 Designs 
The Bleakley (2010) specifications combine up to three sorts of variables: 

• Cross-sectional variables, observed once per geographic unit—e.g., per Brazilian state or 

Colombian municipio. These include indicators of pre-eradication malaria mortality or 

malaria ecology (𝑀), as well as controls. 

• Variables built from census microdata, including measures of schooling, literacy, and 

income. All microdata comes from the Integrated Public Use Microdata Series (IPUMS; 

Ruggles et al. 2015; Minnesota Population Center 2017). 

• A pure time series indicator for exposure to the eradication campaign (𝐸𝑥𝑝). Only the 

panel regressions, described shortly, include 𝐸𝑥𝑝 explicitly. In an approach akin to 

difference-in-differences, these regressions interact 𝐸𝑥𝑝 with 𝑀 to form the treatment 

proxy, while effectively controlling for 𝐸𝑥𝑝 and 𝑀 individually. 

Of the two components of the treatment proxy, 𝐸𝑥𝑝 × 𝑀, the second is a marker for geography 

and therefore potentially for economic history. While external to the causal pathways from 

malaria eradication to the outcomes of interest, it is not very credibly exogenous. The other 

component, 𝐸𝑥𝑝, is more plausibly exogenous in the short-term than the long-term. That is, it is 

not an accident of history that these campaigns occurred in the 20th century rather than the 19th or 

21st. More accidental perhaps is that they took place when they did, rather than a few years 

earlier or later. Rather as in an interrupted time series design, the results that can most 

compellingly demonstrate causality will derive from changes in the time dimension over a few 

years.  

All the Bleakley (2010) estimators begin by averaging an outcome 𝑌 within census year–birth 

year–birth place cells, with the dimensions indexed by 𝑐, 𝑡, 𝑗; this gives a set of values �̅�𝑐𝑡𝑗. These 

are then demeaned nationally, within each census year–birth year group, yielding �̃�𝑐𝑡𝑗. The �̃�𝑐𝑡𝑗 
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are then modeled in regressions. A disadvantage of this preprocessing is that the imprecision of 

the initial demeaning step is not factored into the standard errors from the main estimation step. 

Bleakley (2010) first fits cross-sectional long-difference regressions, with the model 

Δ�̃�𝑗 = 𝑀𝑗𝛽 + 𝐱𝑗
′𝛄 + 𝜖𝑖𝑗 (1) 

𝑗 indexes geographic units and 𝛽 is the parameter of interest.5 𝐱 is a set of controls. 𝜖𝑖𝑗 is the 

mean-zero random error. Δ�̃�𝑗 is the change in the average value of �̃�𝑐𝑡𝑗 for area 𝑗, from the 

“before” to the “after” period. The “after” period begins when the eradication campaigns are 

taken to have commenced—1920 in the United States, 1957 in Brazil, Colombia, and Mexico. 

The “before” period ends in 1890 in the United States, and in 1940 in the Latin countries. The 

latter cut-offs are chosen to assure that all children born in the “before” period would have 

reached adulthood by the campaign, and so would have experienced no campaign-induced 

reduction in childhood malaria exposure. Individuals born in the gap between the two periods do 

not figure in these regressions. 

The long-difference regressions, reported in Bleakley (2010) Tables 1–3, show that most 

outcomes tested improved faster in places with high pre-eradication malaria burden. These 

relative rises constitute circumstantial evidence that eradication delivered substantial benefits. 

However, as Bleakley (2010, p. 13) points out, the regressions do not speak to the historical 

distinctiveness of the rises. Perhaps, for example, these trends began too early or continued too 

long for the malaria eradication campaigns to naturally explain them.6 

The Bleakley (2010) panel regressions look more sharply at timing. To do so, they define the 

exposure variable 𝐸𝑥𝑝 as the fraction of childhood spent in the post-eradication regime, as a 

function of birth year. As a pure time series variable, 𝐸𝑥𝑝 takes the same value regardless of the 

historical malaria burden of one’s birth place. According to the Bleakley (2010) text, childhood 

is taken to last 21 years. This makes 𝐸𝑥𝑝 a piecewise-linear “step” function with a 21-year rise. 

                                                 

5 These can also be viewed as two-period panel regressions in which 𝐸𝑥𝑝 is a dummy for the second period, 

𝑀 × 𝐸𝑥𝑝 is the treatment proxy, and 𝑀 and 𝐸𝑥𝑝 are effectively controlled for through dummy sets for place and 

year of birth.  
6 Bleakley (2010, p. 13) suggests that because they apply to data aggregated over time, the long-difference 

regressions have the advantage of avoiding high-frequency serial correlation. However, the Bleakley (2010) panel 

regressions also address serial correlation, by clustering standard errors by place of birth. 
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In the Latin countries, for example, 𝐸𝑥𝑝 is 0 through 1936, then rises linearly until it reaches 1 in 

1957, and then goes flat again. 

The panel regressions fit 

�̃�𝑐𝑡𝑗 = (𝐸𝑥𝑝𝑡 × 𝑀𝑗)𝛽 + 𝐱𝑡𝑗
′ 𝛄 + 𝛿𝑐 + 𝛿𝑡 + 𝛿𝑗 + 𝜖𝑐𝑡𝑗 (2) 

𝛽 remains the parameter of interest. The 𝛿𝑐, 𝛿𝑡 and 𝛿𝑗 are the indicated dummy sets, with the 𝛿𝑡 

and 𝛿𝑗 obviating the inclusion of 𝐸𝑥𝑝𝑡 and 𝑀𝑗 as controls. The controls 𝐱𝑡𝑗 are not true panel 

variables, in the sense of being observed in primary sources in multiple times in multiple places. 

Rather, all are products of pure cross-sectional and pure time series variables. For example, the 

Bleakley (2010) “full controls” panel regressions include interactions between geographic 

control variables and 𝐸𝑥𝑝.7 

Regressions based on (2) can be viewed as testing whether the step function 𝐸𝑥𝑝 is a strong 

explanator for the temporal evolution of the spatial association between baseline malaria burden 

𝑀 and the outcome 𝑌. The model will fit well if the association takes a low (potentially negative) 

value among cohorts born well before the campaign, begins to rise steadily among those born 

late enough to still be children during the campaign, and then plateaus again among people born 

after the campaign. 

However, fitting the model can generate a false positive if such convergence begins well before 

or extends well after the dates implied by the construction of 𝐸𝑥𝑝—and is in fact caused by other 

forces. Regressions in such cases could estimate 𝛽 as being statistically different from zero, and 

create the misleading impression that 𝐸𝑥𝑝 is a good explanator for long-term trends. In the 

language of time series analysis, regressing one 𝐼(1) variable on another could generate spurious 

results. 

                                                 

7 Equation (2) elides one nonstandard complication in the fitting procedure. However, it is nearly immaterial for the 

cohort-by-cohort regressions of interest here. Before estimation, 𝑌𝑐𝑗𝑡  is demeaned within each census year–birth year 

cell. In other words, the interacted dummies 𝛿𝑐𝑡 are partialled out of the left-side variable, but not the right-side 

ones. Failure to partial these effects out of the right-side variables could cause some of their explanatory power load 

misleadingly onto those variables in an OLS regressions, causing omitted-variable bias. However, in the context of 

(3),discussed next, there is no problem. There, 𝛿𝑐 is controlled for separately in each 𝑡-indexed birth cohort, which is 

equivalent to first partialling the 𝛿𝑐 × 𝛿𝑡 out of all other regressors. Partialling the 𝛿𝑐𝑡 out of the left-side variable 

before estimation has no effect if the estimation itself effectively partials the dummies out of all other variables. 
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Bleakley (2010) takes several steps to rule out such possibilities. All the Bleakley (2010) 

regressions include measures of initial conditions in order to control for mean reversion. Some 

introduce state- or municipio-specific time trends, linear or quadratic. These measures suffice if 

the augmented models largely capture the ambient time trends. But in general, we do not know 

the functional form for major extraneous trends. And it is hard to judge how close the models 

come only by viewing tabulated estimates of 𝛽. 

Bleakley (2010)’s graphical time series approach can give more insight into ambient trends. It 

runs a version of (2) for each (𝑡-indexed) birth cohort:  

�̃�𝑐𝑡𝑗 = 𝑀𝑗𝛽𝑡 + 𝐱𝑗
′𝛄𝑡 + 𝛿𝑐 + 𝜖𝑐𝑗𝑡 (3) 

The regressions yield a series of coefficients, 𝛽𝑡, which measure the cross-sectional association 

between 𝑌 and baseline malaria burden. The 𝛽𝑡 can be graphed for visual inspection of long-term 

trends. And they can be subject to formal inference. Indeed, in studying hookworm eradication, 

Bleakley (2007, Table VI) uses time series regressions to perform inference on whether 𝐸𝑥𝑝 is a 

determinant of the 𝛽𝑡. In contrast, Bleakley (2010) discusses the evolution of the 𝛽𝑡 only 

informally. I resurrect and revise the Bleakley (2007) approach and apply it to malaria 

eradication, just as Roodman (2017) does for Bleakley (2007). 

This revised time series approach begins by fitting the models (2) and (3) directly to census 

microdata, as in most of the Bleakley (2007) hookworm study, rather than to nationally 

demeaned, cell-aggregated outcomes as in Bleakley (2010). This change brings three benefits. 

First, moving to microdata sidesteps the debatable choice in Bleakley (2010) to weight the cell 

aggregates �̃�𝑐𝑡𝑗 by the square root of cell size instead of cell size.8 Instead, one weights 

individuals by the IPUMS-provided sampling weights. Second, the move allows one to 

incorporate individual-level demographic controls. As the regressions are carried out here, this 

amounts to including a dummy for sex in the expanded-sample regressions, since they add 

                                                 

8 Weighting by the square root of cell size is evidently meant to improve efficiency by reducing heteroskedasticity. 

But theory favors weighting simply by cell size. The variances of the cell-average values �̅�𝑐𝑡𝑗 are inversely 

proportional to cell size. Assuming that this inverse law carries over to the �̃�𝑐𝑡𝑗 and 𝜖𝑐𝑡𝑗, the heteroskedasticity is 

reversed by weighting by inverse variance, i.e., cell size. In symbols, if 𝐘 is a column vector holding the �̃�𝑐𝑡𝑗 , 𝐗 

holds the right-side variables, and 𝐖 is a diagonal matrix whose entries are cell sizes, then Aitken’s efficient 

generalized least squares estimator is (𝐗′𝐖𝐗)−1𝐗′𝐖𝐘. The Bleakley (2010) code performs (𝐗′𝐖1 2⁄ 𝐗)
−1

𝐗′𝐖1 2⁄ 𝐘. 
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women (see section 2.1); and likewise for race in the expanded U.S. regressions, which also add 

blacks. Bleakley (2007) uses both dummies too. (Within birth cohorts, controlling for fixed 

census round effects effectively control for age already.) Third, as done here, fitting to microdata 

merges the Bleakley (2010) preprocessing step—national demeaning—into the main estimation 

step, to assure that standard errors reflect imprecision in both steps. 

Formally, I rewrite the panel model (2) and the cohort-specific cross-section model (3) as 

𝑌𝑖𝑡𝑗 = (𝐸𝑥𝑝𝑡 × 𝑀𝑗)𝛽 + 𝐳𝑖𝑡𝑗
′ 𝛂 + 𝐱𝑡𝑗

′ 𝛄 + 𝛿𝑐𝑡 + 𝛿𝑗 + 𝜖𝑖𝑡𝑗 (4) 

𝑌𝑖𝑡𝑗 = 𝑀𝑗𝛽𝑡 + 𝐳𝑖𝑡𝑗
′ 𝛂𝑡 + 𝐱𝑗

′𝛄𝑡 + 𝛿𝑐 + 𝜖𝑖𝑡𝑗 (5) 

Here the new index 𝑖 identifies individual census observations. The 𝛿𝑐𝑡 are dummies for each 

census year–birth year combination and effect the Bleakley (2010) preprocessing. The variable 

set 𝐳 holds individual-level traits. 

The regressions (5) are implemented for all birth cohorts at once via a single, full-sample 

regression in which time dummies 𝛿𝑡 are interacted with all the right-side variables. This 

approach facilitates clustering the standard errors by birthplace, across birth cohorts, to mitigate 

serial correlation. 

To formally test whether 𝐸𝑥𝑝 helps predict the �̂�𝑡, I then estimate two versions of (4). The first 

version introduces three linear spline terms to generalize the step-like functional form of 𝐸𝑥𝑝. 

This loosens the restriction that 𝐸𝑥𝑝 is flat before and after the transitional ramp-up period, and 

allows a formal test of whether relative progress in high-malaria regions accelerated and 

decelerated when expected. Since the Bleakley (2010) text ascribes a 21-year ramp-up phase to 

𝐸𝑥𝑝, I give each spline segment 21 years of coverage. To be precise, the spline model regression 

replaces 𝐸𝑥𝑝𝑡 × 𝑀𝑗  in (4) with the three terms: 

𝑡 × 𝑀𝑗 , min(0, 𝑡 − 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑦𝑒𝑎𝑟 − 21) × 𝑀𝑗 , min(0, 𝑡 − 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑦𝑒𝑎𝑟) × 𝑀𝑗 (6) 

where 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑦𝑒𝑎𝑟 is 1920 for the United States and 1957 for Brazil, Colombia, and 

Mexico; and min(⋅) is the minimum function. The sample is restricted to those born between 21 

years before the first kink and 21 years after the second, for a range of up to 63 years (data 

availability permitting). 



  Comment: Malaria eradication in the Americas 

8 

 

Giving each segment a length of 21 years reflects an arbitrary choice, but one intended to be 

minimally so. In general, lengthening the outer segments would give more weight to long-term 

developments, in a context where the plausibly exogenous variation is short-term. For example, 

if in the United States, the 𝛽𝑡 fell steadily between 1830 and 1865 and then symmetrically 

recovered between 1865 and 1900, extending the first spline segment from 1899 back to 1830 

might give it a flat slope in the best fit, obscuring the steady rise that begins well before the first 

kink point. On the other hand, shortening the outer segments reduces statistical power. Giving 

the outer segments the same 21-years span as the inner one therefore seems reasonable. 

The second version of (4) used to formally test the explanatory power of 𝐸𝑥𝑝 retains 𝐸𝑥𝑝𝑡 × 𝑀𝑗 

as a unitary term in the regression and instead echoes Bleakley (2007, Table VI) in introducing 

controls for polynomial trends in time. The terms of interest, inserted in 𝐳 in (4), are: 

{𝑀𝑗 × 𝑡𝑟}
𝑟=0,…,𝑑

 (7) 

𝑑 ranges up to 5 because Bleakley (2007, note 25), reports testing up to quintic order. Unlike the 

linear spline models, the polynomial models are fit to the full time span of available data. This 

gives more influence to longer-term developments, while attempting to compensate with the 

flexible controls in (7). 

As tools for testing the explanatory value of 𝐸𝑥𝑝, the two models have advantages and 

disadvantages. The polynomial models carry some risk of generating spurious results: the true 

trend may not contain a component of 𝐸𝑥𝑝 yet may correlate with it the context of these models. 

The birth year polynomials are inserted to combat this risk, but the higher ones may 

overparamaterize, imposing a tougher test than a noisy trend could be usually expected to pass, 

even when it contains an 𝐸𝑥𝑝 component.9 For its part, the step model provides a focused and 

intuitive test of whether relative gains in income and human capital broke from ambient trends in 

ways naturally explained by malaria eradication efforts. Yet the model is somewhat arbitrarily 

moored to specific kink dates—1920 or 1957 for the moments of eradication, and 21 years 

earlier. Perhaps a truer model would shift dates of the eradication campaigns, which did not 

actually take place within single years. Or it might extend the critical period of sensitivity to 

                                                 

9 Bleakley (2010, p. 24) warns that “horse-racing the exposure with second-degree trends across cohorts is a more 

difficult test to pass” in the data sets from Latin America, with their shorter time spans. 
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malaria into early adulthood, so that even exposure in one’s 20s mattered for human capital 

accumulation and income. Or the opposite: Victora et al. (2008) suggest that health in the first 

two years of life may matter especially for later outcomes. If the kink points are wrong, then the 

step model may be less able than the polynomial model to detect a true 𝐸𝑥𝑝 component, since 

the model focuses so sharply on whether kinks at occur at predetermined times. 

The upshot of these conceptual difficulties is that one should not take any one of the regression 

results as definitive, and instead exercise judgment in blending all. 

2 Themes in the replication and reanalysis 
2.1 Pre-analysis plan 
I registered a pre-analysis plan for this paper with the Center for Open Science.10 I did not allow 

the plan to limit the analysis. But I found little cause to deviate because I had nearly completed 

the replication and reanalysis of the closely related Bleakley (2007), and this strongly informed 

the plan for revisiting Bleakley (2010). 

The plan sets out several steps, which are listed here with commentary: 

• “Searching the figures and tables for asymmetries, such as one set of regressions being 

conducted at the individual level and another at the geographic level, and, where 

appropriate and practical, testing robustness of the results to copying specification 

choices from one to the other.” Two (arguable) asymmetries are exploited. The U.S. 

regressions are for whites only while the Brazil, Colombia, and Mexico include all races, 

while most of the Bleakley (2007) U.S. regressions also include blacks. I also add blacks 

when expanding the census samples. Also, the Bleakley (2010) long-difference 

regressions apply to more outcomes than do the panel regressions. These include, for 

example, literacy and years of schooling in the Latin countries. The reanalysis treats all 

the outcomes symmetrically.11 

• “Formally testing whether the curve fits in figure 4 are statistically significant, and 

whether those results are robust to inclusion controls for linear or higher-order trends in 

                                                 

10 See osf.io/h98yf.  
11 The Bleakley (2006) working paper does also include panel regressions and graphs for these additional outcomes. 

http://osf.io/h98yf
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time (up to order 5).” The “curve fits” are the graphical fits of 𝐸𝑥𝑝 to the 𝛽𝑡. The formal 

methods for assessing this fit were discussed just above. 

• “Testing robustness of the above to 1) a switch from data aggregated by census year, 

birth year, and birth state to individual-level data; 2) expansion to blacks and women; 

and 3) incorporation of controls for race, sex, census year, and all their interactions.” 

The move to microdata was motivated just above. All these choices mimic the majority 

of the Bleakley (2007) specifications. Bleakley (2010) argues that restriction to men 

makes for a cleaner analysis since “their labor-force participation is higher and more 

consistent across the wide swath of years” (p. 11). Bleakley (2010, note 7) makes a 

similar argument for excluding blacks, but here the paper is not quite as internally 

consistent. The Latin American samples include all races, if only because “race was not 

measured consistently in the Latin America sample” (Bleakley 2010, note 7). However, 

the present reanalysis is premised on the view that the most plausibly exogenous 

identifying variation comes the specific timing of eradication, which argues for 

maximizing power to detect temporal developments over shorter spans, even if at the 

expense of longer-term comparability. Even if distinctive over the long run, trends for 

blacks and women could be expected to kink in the same ways as for white men. 

• “When working with aggregate data, testing robustness to weighting by cell size rather 

than the square-root thereof.” Weighting by cell size—the number of primary 

observations behind each aggregated observation in the analysis data set—should better 

assure efficiency in the face of heteroskedasticity.12 However, this point is largely moot 

since I work mainly with microdata. 

• “Testing robustness to the incorporation of newer and larger census samples from 

IPUMS.” This is done, as discussed in the next subsection. 

• “In the case of the U.S., testing robustness to switching as much as possible to the data 

set recently reconstructed from primary sources [for Roodman (2017)] in order to 

replicate Bleakley (2007).” This is done. 

                                                 

12 See note 8. 
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2.2 Expanded census samples 
The IPUMS census microdata collection has expanded steadily over the years: in countries and 

census rounds included and, at least for the United States, in the size or “density” of samples 

digitized. Bleakley (2010) largely does not specify the densities of the samples it uses. But they 

can be estimated from the reported download dates and the history of certain ipums.org pages at 

archive.org.13 Table 1, column 1, shows my estimates. 

I test robustness by switching to newer, larger IPUMS samples. For the United States, the 

expansion introduces data for 1860, 1870, and 1930. And it raises the density from 1 percent to 5 

percent in 1900 and 1960, and to 100 percent for 1910–40. Column 2 of Table 1 provides more 

detail. As just noted, in expanding the samples, I add women and, in the U.S. case, blacks. The 

Latin American IPUMS samples have not become denser since Bleakley accessed them. But 

more have become available, and are incorporated here: Brazil 2010; Colombia 2005; and 

Mexico 1995, 2010, and 2015.14 

All new regressions reported here incorporate person-level sampling weights provided by 

IPUMS. Most U.S. and Colombia IPUMS samples are “flat,” meaning that this weighting is not 

needed to make them statistically representative. However, there are exceptions (Ruggles et al. 

2015; usa.ipums.org/usa/intro.shtml#weights). And more of the Brazil and Mexico samples 

require weighting because of systematic under- and over-sampling of various subpopulations.15 

Bleakley (2010) does not mention using sampling weights. The paper appears to use them in 

aggregating the outcome variables into birth place–birth year–census year cells (to form the 𝑌𝑐𝑡𝑗), 

for I obtain the best matches to the public data when also doing so. However, after aggregation, 

the Bleakley (2010) regressions are weighted only by the square root of cell size, which—again, 

going by what produces the best match—is based on the unweighted observation counts within 

                                                 

13 Bleakley (2010) reports last obtaining U.S. data from IPUMS on November 14, 2005, and last accessing Brazil, 

Colombia, and Mexico data in April 2006. See the change log at usa.ipums.org/usa-action/revisions and the 

archive.org histories of ipums.org/usa/sampdesc.html, 

international.ipums.org/international/sample_designs/sample_designs_br.html, international.ipums.org/international 

/sample_designs/sample_designs_co.html, and 

international.ipums.org/international/sample_designs/sample_designs_mx.html.  
14 IPUMS also offers 2005 census records for Mexico, but these lack the birthplace variable BPLMX, which 

obstructs their use here. 
15 See international.ipums.org/international-action/sample_details.  

https://usa.ipums.org/usa/intro.shtml#weights
https://usa.ipums.org/usa-action/revisions
https://ipums.org/usa/sampdesc.html
https://web.archive.org/web/20061220194658/http:/international.ipums.org:80/international/sample_designs/sample_designs_br.html
https://web.archive.org/web/20071020221555/http:/international.ipums.org/international/sample_designs/sample_designs_co.html
https://web.archive.org/web/20071020221555/http:/international.ipums.org/international/sample_designs/sample_designs_co.html
https://web.archive.org/web/20061220114741/http:/international.ipums.org:80/international/sample_designs/sample_designs_mx.html
https://international.ipums.org/international-action/sample_details
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cells. Thus, the Bleakley (2010) regressions do not fully correct for non-representative sampling 

within the IPUMS data sets. 

My use of IPUMS weights is not pre-registered. However, it is implicitly preregistered in that 

Roodman (2017) does the same. And one reason it was not pre-registered is that only by 

examining the public Bleakley (2010) data did I determine that the original does not fully 

incorporate the weights. 

3 Reconstruction of analysis data 
From IPUMS microdata, I reconstruct all the Bleakley (2010) left-side variables. As for the 

right-side variables, I import reconstructed versions for the United States from the Roodman 

(2017) replication of Bleakley (2007). I do not attempt to reconstruct the right-side variables for 

the Latin countries, viewing the time cost as prohibitive.16 In the regressions, I use reconstructed 

variables where available and take them from the public Bleakley (2010) data otherwise. 

To check for problems in the reconstructed variables—or the originals—I compare the two to the 

degree possible. The public Bleakley (2010) data observe the variables in two forms. Long-

difference cross-sections contains one observation, in differences, for each geographic unit. 

Panel data sets aggregate more finely, within birth year–birth place–census year cells; but they 

only cover one outcome variable per country.  

Table 2 presents means and standard deviations for all Bleakley (2010) outcomes, as well as their 

cross–data set correlations. All statistics incorporate IPUMS sampling weights. The matches are 

mostly good, especially in the data arrayed for panel analysis, which is the framework of 

exclusive interest here. By chance, the panel correlations round to 0.931 for the Unites States and 

Colombia; the correlation is 1.000 for Brazil and 0.998 for Mexico (right side of  

                                                 

16 This paper began as an offshoot of a longer-term project to review the evidence of the long-term impact of 

deworming. Having fully reconstructed the U.S.-focused Bleakley (2007), and discovered the publicly available 

analysis data for Bleakley (2010) the choices made here amounted to picking low-hanging fruit. The only additional 

variable reconstruction carried was for the outcomes in the Latin countries, which was made practical by the 

accessibility of IPUMS International online data system. 
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Table 2). 17,18 In the long-difference data (left side of the table) the correlations are a bit lower for 

the U.S. outcomes, at around 0.9 and 0.8, and are much lower for earned income in Brazil, at 

0.15.19 Lacking full access to the original data and code, it is hard to know what causes these 

discrepancies. 

In the case of the United States, I copy from Roodman (2017) the reconstructed right-side 

variables. Table 3 does for these variables what  

Table 2 did for the left-side ones. The first three rows show nearly perfect matches for the 

indicator of regional malaria burden (𝑀) and the two controls included in all Bleakley (2010) 

panel specifications, a state-level measure of agricultural wages in 1899 and a dummy for being 

in the South. The remaining rows turn to the variables introduced in Bleakley (2010)’s “full 

controls” specifications, which are the focus here.20 The matches are close, except for the 

education variables. This is unsurprising given the ambiguity in dates given for the changes: 

“circa 1902–32”. Most likely the reconstructed variables use different editions of the underlying 

federal government report. And possibly the negative correlation for log change in pupils per 

teacher owes to Bleakley (2010) inverting this variable, to teachers per pupil—which in itself 

would be harmless when taking log changes. 

Indeed, the juxtaposition of original and reconstruction exposes discrepancies between the 

Bleakley (2010) text and the Bleakley (2010) data, some of which appear to be implementation 

errors. Since the publicly available data and code exactly replicate the published Bleakley (2010) 

tables, the published results reflect all these discrepancies. The cross-state control variables are 

                                                 

17 Total income in the 1960 Brazil data is reported after censoring into an ordinal variable. Bleakley (2010) appears 

to “top-code” the 50,000-and-above category as 50,001, so I do the same. For lower categories, range midpoints are 

used, as documented in the original. 
18 The match with Colombia is most hard-won. After much trial and error, I determined that the “bplcol2” fields of 

the Columbia data sets, which index the geographic unit, the municipio, had been rearranged relative to other 

variables, as if the column had been sorted in Excel while leaving other columns untouched. Thus, the variable does 

not in fact obey the coding of the IPUMS International field from which it ultimately derives, BPLCO2. After 

consulting the primary source for the altitude and temperature variables (Banco de la Republica 1960), I estimate 

that the mapping to IPUMS codes can be recovered from the Bleakley (2010) public long-difference data using the 

following algorithm. Sort it by bplcol1 and bplcol2; then numbering the rows starting from 1, except skipping 

indexes 284 and 473. I cannot tell whether only bplcol2 was rearranged—which in itself would not affect the 

Bleakley (2010) results—or whether other variables were too, which would be an error. 
19 For Brazil, total income, as distinct from earned income, is of primary interest in the analysis, partly because more 

census rounds collected it. 
20 Bleakley (2010) Figure 4 is the sole figure in the original exploring the temporal evolution of the 𝛽𝑡 in (5). Its 

specifications all include the full control set. 
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to have been multiplied by 𝐸𝑥𝑝 before entering the regressions; they are multiplied by birth year 

instead. While the text defines 𝐸𝑥𝑝 assuming childhood lasts 21 years, in the panel data, 𝐸𝑥𝑝 in 

fact rises from 0 to 1 over 18 years. (Likewise for Brazil, Colombia, and Mexico.) The control 

“Doctors per Capita, 1998” is actually residents per doctor. The main text lists the log change in 

teacher salaries among the controls but Bleakley (2010) Appendix III and the code refer instead 

to the log change in school term length. The U.S. panel regressions include birth cohorts back to 

1815, which is earlier than the 1825 starting point stated in text. 

Table 4, below, checks whether these problems drive the Bleakley (2010) U.S. panel results. 

They do not. The table closely follows the format of Table 4, panel A, of Bleakley (2010), which 

presents all the U.S. panel estimates, except that it doubles the number of columns. The odd 

columns copy from the original. The even columns present results obtained from the public 

Bleakley (2010) data set after properly constructing the interaction terms with 𝐸𝑥𝑝, inverting 

residents per doctor to doctors per resident, and defining childhood as lasting 21 years. As well, 

observations are weighted by cell size rather than the square root thereof, as set forth in the pre-

analysis plan. These fixes (largely not pre-registered) cause no substantive change in the 

Bleakley (2010) panel results. 

4 Time series results 
Having reconstructed all of the Bleakley (2010) variables except for the cross-section ones from 

Brazil, Colombia, and Mexico, I implement the revised designs defined in section 1. To start,  

Figure 1, below, strives to imitate the Bleakley (2010) Figure 4, the sole presentation in the 

original of time series results. Each data point represents an estimate based on (3) of 𝛽𝑡, which, 

recall, is the cross-sectional association among people born in year 𝑡 between historical malaria 

burden and average adult earnings. The graph uses only public Bleakley (2010) data, which 

aggregates from samples of (white) men. Like the public Bleakley (2010) code,  

Figure 1 takes childhood to last 18 years, as in the Bleakley (2010) code. However, For the 

United States, the dependent variable is log occupational income score; for Brazil and Mexico, 

log total income; and for Colombia, the log of a Bleakley-constructed variable called the 

industrial income score. The figure departs substantively from the original only in drawing 95 

percent confidence intervals for the point estimates. It departs cosmetically in not superimposing 
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a plot of the 𝐸𝑥𝑝 step function. But vertical lines are drawn to mark the birth cohorts at which 

𝐸𝑥𝑝 kinks—the years the eradication campaigns began, and 18 years before. 

 

Figure 1 matches Bleakley (2010) Figure 4, but not perfectly. This is to be expected when 

original data is used, but original code is not. (The public Bleakley (2010) code only generates 

tables, not figures.) In all four countries, as in the original, 𝛽𝑡 rises with time—generally from 

negative values toward zero, but in Colombia from approximately zero to positive values. 

Figure 2 updates  

Figure 1 by fitting to the expanded data set at the microdata level, according to (5). Now, census 

samples are added or increased in density. Women are included. For the United States, blacks are 

added too. Sex and race dummies enter the control set. Observations are weighted using IPUMS 

individual weights. In marking the first potential kink point, childhood is taken to last 21 years, 

as stated in the Bleakley (2010) text, rather than the 18 in the Bleakley (2010) code. 

Except in Mexico, the expanded-sample results appear statistically compatible with the previous, 

smaller-sample results. In Mexico, an apparent rise before the predicted take-off year of 1936 

now disappears.  

Figure 2 confronts us with the paramount empirical question in this reanalysis: did the cross-

sectional association between baseline malaria endemicity and future earnings rise at an 

historically anomalous rate among the cohorts born in the run-up to eradication, marked by the 

dashed, vertical grey lines? A glance at Figure 2 suggests that the answer is “yes” in all the 

countries save Mexico. 

To formally test that interpretations, Figure 3 and Figure 4 fit the linear spline and polynomial 

models, defined in (6) and (7), to the expanded microdata. These figures retain the dots from 

Figure 2 but, for legibility, drop the confidence intervals. The linear spline fits, in Figure 3, 

largely support the Bleakley (2010) impact model, even in Mexico. The hypothesis of no 

acceleration at the first kink is comfortably rejected in Latin America (p = 0.00, 0.00, 0.07 for 

Brazil, Colombia, and Mexico, clustering standard errors by birth state). An upward bend in the 

United States appears to have begun earlier than predicted in the Bleakley (2010) impact model, 
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making the null of no upward bend at the expected time harder to reject (p = 0.39). Meanwhile, 

the null of no deceleration at campaign onset (second kink point) is strongly rejected for the 

United States, Brazil, and Mexico (p = 0.03, 0.00, 0.05) and more weakly so for Colombia (p = 

0.23). 

The polynomial fits, in Figure 4, tell a similar story. The fits for models of order 0 to 5 are shown 

in orange, green, blue, red, purple, and brown, respectively, while the six corresponding p values 

for the coefficient on 𝐸𝑥𝑝 × 𝑀 are listed beneath. Corresponding estimates of 𝛽 in (4) are 

gathered in Table 5. Even with controls up to order 5 in time, the fits to U.S., Brazil, and Mexico 

data mostly assign a statistically strong positive value to 𝛽. The results are more mixed for 

Colombia, yet generally the p values on 𝐸𝑥𝑝 × 𝑀  stay low.  

Last, Figure 5 and Figure 6 apply the methods of the previous two figures to the outcomes for 

which Bleakley (2010) reports long-difference but not panel results. These are Duncan’s 

socioeconomic indicator (SEI) for the United States, earned income for Brazil, and literacy and 

years of schooling for all three Latin countries. 

Somewhat like the Bleakley (2010) long-difference regressions, these new figures produce a 

more mixed bag for these outcomes. Turning first to the linear spline fits in Figure 5, in the 

United States, the trend on Duncan’s SEI appears to bend at the first allowed kink, but not at all 

at the second, reversing the pattern for the closely related socioeconomic index (refer back to the 

upper-left of Figure 3). In Brazil, while relative progress on earned income (as distinct from total 

income) slows when expected, it does not appear to accelerate when expected, perhaps owing to 

low statistical power from small samples in the early years. In none of the Latin countries does 

relative progress on adult literacy or years of schooling slow at the expected time (second kink 

point). In all, it bends with statistical significance at the first kink point—but bends the “wrong” 

way in Mexico.  

The polynomial models for these outcomes produce somewhat more encouraging results. Figure 

6 depicts these and Table 5 displays the corresponding impact estimates and standard errors. 

Forced to fit to the full U.S. historical record, the polynomial models confidently endow the 

treatment term 𝐸𝑥𝑝 × 𝑀 with explanatory power. Polynomial controls also strengthen the fit for 

earned income in Brazil. For human capital variables, signs, magnitudes, and statistical 
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significance of the impact estimates vary substantially with the polynomial order, which is easier 

to see in Table 5. Signs of impact do not appear robust. 

Overall, the new time series results mostly strongly support the proposition that reduced 

childhood malaria exposure increased adult earnings in Latin America. It may well have done so 

too in the United States too, but there the step model fits less consistently point to acceleration 

and deceleration with the expected timing (top left of Figure 3 and of Figure 5). Eradication did 

not so clearly increase literacy or schooling. 

5 Conclusion 
Bleakley (2010) identifies impacts from variation in the product of two factors: the geographic 

pattern of baseline malaria burden and the sudden onset of campaigns to relieve that burden. The 

first factor cannot credibly be viewed as exogenous since it is a marker for climate and 

geography, and thus economic history. The second can be taken as exogenous, but only in the 

short term. That malaria eradication campaigns took place between, say, 1900 and 2000, is of a 

piece with the economic and scientific development of the Americas. That the individual 

campaigns started in the years they did, rather than a few years before or after, is more an 

accident of history. Thus, given the informal priors I bring to this study, for it to produce strong 

evidence of impact, it must demonstrate certain distinctive changes in the outcomes of interest in 

the time dimension, and that with a precision measured in years, not decades. 

In my view, only the time-series analysis performed here fully confronts this challenge. The 

Bleakley (2010) long-difference regressions speak to whether relative gains occurred in 

historically malarial areas but not their functional form. The Bleakley (2010) panel regressions 

get more at functional form, introducing birthplace-specific quadratic time controls. But as 

presented, it is hard to judge whether these results come from models that are flexibly enough 

specified to largely absorb ambient trends. If the models are overly parsimonious, they can 

generate spurious regressions. Graphing the time series patterns and performing formal inference 

on them provides a clearer view of the temporal variation that is the most credible source of 

causal identification. 

Applying this paper’s methods to the Bleakley (2007) assessment of the impact the hookworm 

eradication effort in the American South leads, in my view to a significant update: the suggestion 
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of historically anomalous convergence coincident with that effort disappears (Roodman 2017). 

But for malaria, the reanalysis does not trigger much update. Bleakley (2010) finds “that cohorts 

with less childhood exposure to malaria have higher literacy rates, but results are mixed for years 

of schooling.” The new analysis tends to produce mixed results for both. Meanwhile, it broadly 

supports Bleakley’s “main result” that the evidence indicates that eradication raised adult 

income. 

Separately, this reanalysis points up limitations in the data and code archiving practices of the 

American Economic Association journals. One purpose of those archives is to increase 

confidence in published results by documenting precisely how they are obtained. Current 

archiving practices appear to undercut this purpose in two respects. First, they provide no access 

to the primary data, or at least to the code that transforms the primary data into the analysis data. 

The American Economic Review’s own assessment of compliance with its data availability 

policy suggested as much in 2011. “Simply requiring authors to submit their data prior to 

publication may not be sufficient to improve accuracy….The broken link in the replication 

process usually lies in the procedures used to transform raw data into estimation data and to 

perform the statistical analysis, rather than in the data themselves” (Glandon 2011).21 Second, 

code is provided for tables only, not figures. Yet figures too can play a central role in a study’s 

conclusions. Like tables, they distill large amounts of data to inform inference. They ought to be 

replicable.  

As a result of these two gaps, to the extent that Bleakley (2010) and this reanalysis disagree, it is 

impossible to be sure why they do so. And to the extent they agree when the reanalysis copies 

variables from the publicly archived data, one cannot know to what extent the shared conclusions 

are driven by bugs in the non-archived transformation code. These avoidable ambiguities mis-

serve the researchers and decisionmakers that journal authors and publishers aspire to influence. 

                                                 

21 All of the code and data for this reanalysis are posted online, with one exception. The IPUMS International 

confidentiality rules prevent the redistribution of the IPUMS extracts for Brazil, Colombia, and Mexico. For that, a 

precise description of the extracting query is posted. 
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TABLE 1. U.S. IPUMS CENSUS SAMPLES IN ORIGINAL AND EXPANDED DATA SETS 

Census year 

Original (estimated; 

percent) Expanded (percent) 

1860 0 1.2a 

1870 0 1.2 

1880 100 100 

1890 0 0 

1900 1 5 

1910 0.4 100 

1920 1 100 

1930 0 100 

1940 1 100 

1950 1 1 

1960 1 5 

1970 1 1 

1980 5 5 

1990 5 5 

2000 5 5 
a Excludes slaves. 

Source: Authors’ calculations. 
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TABLE 2. SUMMARY STATISTICS OF BLEAKLEY (2010) DEPENDENT VARIABLES 

 Long-difference cross-section  Panel data 

 Original New Correlation  Original New Correlation 

United States 
Log occupational income score 0.324 

(0.084) 

0.292 

(0.082) 

0.897 

 
 3.286 

(0.112) 
3.279 

(0.132) 
0.931 

 
Log Duncan’s SEI 0.560 

(0.102) 

0.504 

(0.074) 

0.806 

 
    

Observations 48 48   9604 9605  

Brazil  
Log total income –0.012 

(0.080) 

–0.007 

(0.087) 

0.945 

 
 8.625 

(2.268) 
8.701 

(2.262) 
1.000 

 
Log earned income –0.012 

(0.075) 

–0.017 

(0.223) 

0.152 

 
    

Literacy –0.002 

(0.053) 

–0.003 

(0.052) 

0.994 

 
 

Years of schooling 0.032 

(0.537) 

–0.001 

(0.513) 

0.949 

 
 

Observations 24 28   2231 2587  

Colombia 
Industrial income score –0.049 

(0.080) 

–0.055 

(0.098) 

0.855 

 
 –0.112 

(0.174) 
–0.106 
(0.200) 

0.931 
 

Literacy –0.020 

(0.100) 

–0.018 

(0.096) 

0.973 

 
 

Years of schooling –0.480 

(0.632) 

–0.487 

(0.617) 

0.973 

 
 

Observations 523 525   38070 39513 

Mexico 
Log earned income –0.044 

(0.173) 

–0.110 

(0.328) 

0.925 

 
 9.659 

(2.914) 
9.391 

(2.902) 
0.998 

 
Literacy –0.017 

(0.072) 

–0.021 

(0.082) 

0.993 

 
 

Years of schooling –0.229 

(0.497) 

–0.373 

(0.529) 

0.931 

 
 

Observations 32 32   2965 2965  

Variable means displayed with standard deviations in parentheses beneath. Third and sixth columns show cross–

data set correlations. “Original” results computed from public Bleakley (2010) data. “New” results computed after 

reconstructing the data sets. All statistics weighted by cell-level sums of the IPUMS-provided individual weights in 

the reconstructed data set. 

Source: Authors’ calculations. 
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TABLE 3. SUMMARY STATISTICS OF U.S. CROSS-STATE VARIABLES 

Variable Original New Correlation 

Malaria share of mortality, 

1889 (𝑀) 

0.318 

(0.326) 

0.295 

(0.302) 

0.994 

 

Agricultural wage, 1899 

($/month) 

16.938 

(6.393) 

17.415 

(6.396) 

0.999 

 

South 0.271 

(0.449) 

0.271 

(0.449) 

1.000 

 

Residents per doctor, 1898 743.333 

(244.706) 

743.361 

(244.719) 

1.000 

 

Board of health spending, 

1898 ($/1,000 residents) 

6.333 

(13.253) 

6.779 

(13.321) 

0.976 

 

Infant mortality rate, 1890 (per 

1,000 births) 

162.797 

(68.310) 

105.358 

(51.474) 

0.983 

 

Hookworm prevalence among 

army recruits, 1917–19 

0.069 

(0.097) 

0.069 

(0.097) 

1.000 

 

Log change in teacher salaries, 

circa 1902–32 

1.444 

(0.175) 

3.216 

(0.199) 

0.775 

 

Log change in school term 

length, circa 1902–32 

0.114 

(0.122) 

0.169 

(0.149) 

0.631 

 

Log change in pupils/teacher, 

circa 1902–32 

0.118 

(0.275) 

–0.043 

(0.172) 

–0.362 

 

Adult literacy rate, 1910 0.907 

(0.074) 

0.907 

(0.074) 

1.000 

 

Population urban, 1910 0.340 

(0.231) 

0.392 

(0.225) 

0.982 

 

Population black, 1910 0.107 

(0.164) 

0.107 

(0.163) 

1.000 

 

Male unemployment, 1930 0.043 

(0.018) 

0.079 

(0.026) 

0.913 

 

Observations 48 48  

Variable means displayed with standard deviations in parentheses beneath. Final 

column shows cross–data set correlations. All statistics are unweighted. “Original” 

results computed from public Bleakley (2010) data. “New” results computed after 

reconstructing the data set from primary sources. Sample excludes Alaska, Hawaii, and 

the District of Columbia. 

Source: Authors’ calculations. 
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TABLE 4. REPLICATION OF BLEAKLEY (2010) PANEL ESTIMATES OF THE EFFECT OF CHILDHOOD EXPOSURE ON LOG OCCUPATIONAL 

INCOME SCORE IN THE UNITED STATES 

 Mean reversion and region controls  Additional controls 

Degree of polynomial 

trend for year of birth 
0 1 2  0 1 2 

 Original New Original New Original New  Original New Original New Original New 

Baseline 0.131 

(0.030) 

0.183 

(0.038) 

0.115 

(0.031) 

0.196 

(0.038) 

0.131 

(0.025) 

0.093 

(0.024) 

 0.130 

(0.032) 

0.174 

(0.036) 

0.099 

(0.035) 

0.199 

(0.044) 

0.111 

(0.020) 

0.055 

(0.012) 

Post-1920 break in 

birthplace time trend 

0.082 

(0.015) 

0.103 

(0.016) 

0.094 

(0.020) 

0.139 

(0.023) 

0.105 

(0.024) 

0.073 

(0.017) 

 0.076 

(0.019) 

0.100 

(0.016) 

0.080 

(0.023) 

0.140 

(0.027) 

0.082 

(0.018) 

0.056 

(0.013) 

Allow for birthplace x 

time effects 

0.103 

(0.026) 

0.108 

(0.016) 

0.110 

(0.030) 

0.138 

(0.021) 

0.123 

(0.023) 

0.079 

(0.017) 

 0.086 

(0.027) 

0.106 

(0.017) 

0.094 

(0.033) 

0.138 

(0.025) 

0.110 

(0.021) 

0.066 

(0.014) 

Drop early census years 

(<1930) 

0.106 

(0.021) 

0.107 

(0.016) 

0.105 

(0.017) 

0.084 

(0.018) 

0.032 

(0.015) 

0.014 

(0.014) 

 0.098 

(0.022) 

0.107 

(0.016) 

0.108 

(0.020) 

0.068 

(0.015) 

0.030 

(0.018) 

0.014 

(0.014) 

Add region x year x 

YOB effects 

0.131 

(0.030) 

0.175 

(0.038) 

0.116 

(0.029) 

0.194 

(0.037) 

0.131 

(0.024) 

0.090 

(0.025) 

 0.127 

(0.032) 

0.166 

(0.036) 

0.098 

(0.034) 

0.197 

(0.043) 

0.108 

(0.019) 

0.050 

(0.013) 

“Original” results generated with Bleakley (2010) public data and code. “New” results use same data and address coding issues described in text. 

Standard errors in parentheses, clustered by state. 

Source: Bleakley (2010), Table 4; authors’ calculations. 
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TABLE 5. IMPACT ESTIMATES ON ALL BLEAKLEY (2010) OUTCOMES, CONTROLLING FOR POLYNOMIAL 

TIME TREND UP TO ORDER 5  

Country Outcome Coefficient on 𝑀 × 𝐸𝑥𝑝 

Order of Polynomial Trend 0 1 2 3 4 5 

U.S. Log occupational 

income score 

0.087 

(0.010) 

0.070 

(0.012) 

0.064 

(0.014) 

0.041 

(0.015) 

0.040 

(0.014) 

0.015 

(0.016) 

U.S. Log Duncan's SEI 0.096 

(0.023) 

0.068 

(0.035) 

0.056 

(0.033) 

0.042 

(0.032) 

0.032 

(0.033) 

0.031 

(0.027) 

Brazil Log total income 0.439 

(0.071) 

0.477 

(0.132) 

0.486 

(0.120) 

0.504 

(0.082) 

0.433 

(0.097) 

0.253 

(0.122) 

Brazil Log earned income 0.276 

(0.060) 

0.285 

(0.134) 

0.340 

(0.113) 

0.323 

(0.103) 

1.000 

(0.180) 

0.692 

(0.212) 

Brazil Literacy 0.121 

(0.026) 

0.009 

(0.037) 

0.048 

(0.032) 

–0.040 

(0.033) 

–0.102 

(0.041) 

0.069 

(0.046) 

Brazil Years of schooling 0.846 

(0.358) 

0.883 

(0.565) 

0.870 

(0.596) 

0.906 

(0.458) 

0.256 

(0.790) 

0.906 

(0.729) 

Colombia Industrial income score 0.031 

(0.009) 

0.018 

(0.011) 

0.039 

(0.012) 

0.025 

(0.021) 

0.029 

(0.023) 

0.170 

(0.058) 

Colombia Literacy 0.020 

(0.012) 

0.009 

(0.010) 

0.018 

(0.010) 

–0.020 

(0.018) 

–0.006 

(0.019) 

–0.011 

(0.035) 

Colombia Years of schooling 0.368 

(0.156) 

–0.015 

(0.176) 

0.180 

(0.151) 

0.151 

(0.382) 

0.303 

(0.352) 

–0.079 

(0.759) 

Mexico Log earned income 0.250 

(0.051) 

0.133 

(0.069) 

0.199 

(0.062) 

0.255 

(0.136) 

0.274 

(0.124) 

–0.146 

(0.278) 

Mexico Literacy 0.015 

(0.030) 

–0.031 

(0.030) 

–0.052 

(0.025) 

0.012 

(0.021) 

0.019 

(0.023) 

0.138 

(0.051) 

Mexico Years of schooling –0.386 

(0.276) 

–0.433 

(0.424) 

–0.511 

(0.351) 

0.542 

(0.403) 

0.895 

(0.439) 

1.266 

(0.605) 

Estimates based on expanded data set, including women and, in the U.S. case, blacks as well as whites. Regressions 

weighted by IPUMS-provided sampling weights. Standard errors clustered by state of birth in parentheses. 

Source: Authors’ calculations. 
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FIGURE 1. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: ORIGINAL DATA SETS 
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FIGURE 2. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: EXPANDED DATA SETS 
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FIGURE 3. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: MODEL WITH LINEAR 

SPLINE GENERALIZATION OF STEP FUNCTION 
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FIGURE 4. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: MODEL WITH POLYNOMIAL 

TIME CONTROLS, FIT TO EXPANDED DATA SET 
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FIGURE 5. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: MODEL WITH LINEAR 

SPLINE GENERALIZATION OF STEP FUNCTION, ALTERNATIVE OUTCOME MEASURES 
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FIGURE 6. REPLICATION AND EXTENSION OF BLEAKLEY (2010) FIGURE 4: MODEL WITH POLYNOMIAL 

TIME CONTROLS, FIT TO EXPANDED DATA SET, ALTERNATIVE OUTCOME MEASURES 

 


