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This article is based on a series of special
lectures delivered at University College,
London, in November 1972.

The birth of the subject generally referred to as "artificial
intelligence" has been dated 1 from Turing's paper2 Intelligent
Machinery written in 1947. After twenty-five years of fitful
growth it is becoming evident that the new subject is here to
stay.

The scientific goal of research work in artificial intelligence
is the development c-f a systematic theory of intelligent pro-
cesses, wherever they may be found; thus the term "artificial
intelligence" is not an entirely happy one. The bias towards
artefacts is reminiscent of aerodynamics, which most people
associate with aeroplanes rather than with birds (yet fruitful
ornithological application has been achieved3 )- Here I shall
review briefly some of the experimental knowledge systems
which have been developed, and indicate how pieces of theory
abstracted from these might fit together.

Some Performance Systems
Game playing was an early domain ofinterest, and Shannon*,

Turing 5 , and Newell, Shaw and Simon 6 contributed classic
analyses ofhow machines might be programmed to play chess.
The first significant performance system was Samuel's pro-
gram7 for checkers, which eventually learned to play at the
level of a good county player, far higher than that of Samuel
himself. This last circumstance played a valuable part in
discrediting the cruder manifestations of the doctrine that
"you only get out what you put in".

The fundamental mechanism underlying all this work has
been a cycle of processes: lookahead, evaluation and mini-
maxing. These derive ultimately from a method used to
establish a "foregone conclusion theorem" for such games
(two person, zero sum, perfect information, no chance moves)
which states that the outcome value can be computed on the
assumption that both players follow a (computable) best
strategy. For a trivial game, such as that schematized in
Fig. la, the computation can actually be performed: all
terminal board positions are assigned values by the rules of
the game, and these are "backed up" by the minimax assumption
that White will always choose the immediately accessible
position which has the maximum value and that Black will
select the one with the minimum value. Clearly the procedure
not only demonstrates a theorem but also defines a strategy.

But what is to be done when, as in any serious game, it is
not practicable to look ahead to the end? Turing and Shannon
independently suggested looking ahead as far as practicable,
to what may be termed the "lookahead horizon", assigning
some approximate values to the positions on the horizon by
an evaluation function, and backing these up by the same
minimax rule. The corresponding strategy says "choose that
immediate successor which has the highest backed-up value".

This rule has been proved empirically in numerous game-
playing programs, but in spite of its intuitive appeal it has

never been formally justified. The question is posed diagram-
matically in Fig. \b.

Search procedures form part of the armoury of the opera-
tions-research man and the computer professional. Stemming
from such work as Samuel's, people concerned with game
playing and problem solving have implemented mechanisms
for guiding the search, first, by forming sub-problems8 or,
second, by making heuristic estimates of distance-to-goal9.
Various theorems have established conditions under which
such techniques can be used without sacrificing the certainty
of termination or the optimality of the solution found 10,12,13 .

The use of an "evaluation function" to guide the search is a
way of smuggling human ad hoc knowledge of a problem in
through the back door. There is no cause to disdain such a
route; it is after all one of the principal channels through which
natural intelligences improve their understanding of the world.
At the same time automatic methods have been developed for
improving the reliability with which problem states are
evaluated 11 .

Samuel's early work on game learning7 indicated that
seemingly pedestrian mechanisms for the storage and recall

Fig. 1 a, The root of this two-level lookahead tree acquires a
value by alternate application of the "max" and "mm" func-
tions. If alternation is extended backwards from all terminal
positions of the game tree, the initial position of the entire game
will ultimately be assigned a value. Terminal positions are
shown as boxes; />, lookahead tree in which the nodes are
marked with "face values". Boxed figures are values backed up
from the lookahead horizon. If move-selection were decided by
face values, then move A would be chosen, but if backed-up

values then move B. What is the rationale for B ?
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of previously computed results can have powerful effects on
performance. Recently the combination of rote learning
schemes with heuristic search has been shown to have applica-
tions to plan formation in robots 13,14. To exploit the full
power 6f this combination, whether in game playing, in robotics
or in other applications, one would like the rote dictionary to
contain generalized descriptions or "concepts" (for example,
of classes of game-positions "essentially similar" from a
strategic point of view) to be looked up by processes ofrecog-
nition, rather than by point-by-point matching. Such a
dictionary is to be used in the style "Ifthe situation is of type A,
then perform action x, if of type B, then action y" and so on.
One is then in effect processing a "decision table" which is
formally equivalent to a computer program. There is thus
a direct link between work on the automatic synthesis of
strategies in game playing and robotics, and work directed
towards automatic program-writing in general.

Recognition usually involves the matching of descriptions
synthesized from sensory input with stored "canonical" de-
scriptions of named objects, board positions, scenes, situations
and so on. Choice of representation is crucial. At one
extreme, predicate calculus 15 has the merit of generality, and
the demerit ofintractability for updating and matching descrip-
tions of objects, positions, scenes or situations; at the other
extreme lie simple "state vector" representations, which fall
down through awkwardness for handling complex inter-
relationships. Somewhere in the middle lies the use of directed
labelled graphs ("relational structures", "semantic nets") in
which nodes stand for elements and arcs for relations. Im-
pressive use of these structures has been made in a study of
concept formation in the context of machine vision16.

Language interpretation has been the graveyard of many
well-financed projects for "machine translation". The trouble
proved to be the assumption that it is not necessary for the
machine to "understand" the domain of discourse. One of
the first demonstrations ofthe powerof the semanticapproach in
this area was Bobrow's "STUDENT" program 17 for answering
school algebra problems posed in English. A program by
Woods, Kaplan and Nash-Webber 18 for the interrogation in
English of a data base with a fixed format has been used by
NASA scientists to answer questions about Moon rocks. An
essay by Winograd 19 on computerhandling ofEnglish language
dialogue, again making intensive use of an internal model of
the dialogue's subject matter, has left no doubt that machine
translation can only be solved by knowledge-based systems.
The knowledge base required to render arbitrary texts non-
ambiguous is now recognized to be bounded only by the
knowledge possessed by their authors. Winograd compares
the following two sentences:

The city councilmen refused to give the women a permit for
a demonstration because they feared violence.

The city councilmen refused to give the women a permit for
a demonstration because they advocated revolution.

The decision to refer "they" to "councilmen" in the first
case and to "women" in the second implies a network of
knowledge reaching into almost every corner of social and
political life.

Mass spectrogram analysis was proposed by Lederberg as a
suitable task for machine intelligence methods. The heuristic
DENDRAL20 program developed by him and Feigenbaum
now outperforms post-doctoral chemists in the identification
of certain classes of organic compounds. The program is a
rich quarrying ground for fundamental mechanisms of intelli-
gence, including the systematic conjecture of hypotheses,
heuristic search, rote learning, and deductive and inductive
reasoning. I shall refer back to this work later in connexion
with the use made by intelligent systems of stored knowledge.

Of all the knowledge systems which have been attempted,
robotics is perhaps the most simple in appearance. In reality,
however, it is the most complex. The chess amateur can
appreciate that Grandmaster chess has depth and subtlety.
But there is no such thing as a human amateur at tasks of

navigation and "hand-eye" assembly. Every man is a Grand-
master at these tasks, having spent most of his waking life in
unwitting but continual practice. " Not having been informed
that he is a Grandmaster, and having long since stored most
of his skill at a subliminal level, he thinks that what seems
subjectively simple is objectively so. Experience of research
inrobotics is a swift and certain cure. Something of the depth
ofanalysis which is required can be gleaned from the discussion
by McCarthy and Hayes21 of the properties which should be
possessed by a calculus of situations, actions and causal laws.

The crux ofany such calculus is how to represent in a formal
language what the robot knows about its world. McCarthy
and Hayes distinguish "epistemologically adequate" and
"heuristically adequate" representations. (In an earlier
generation Ryle22 contrasted "knowing that" and "knowing
how".) "The epistemological part is the representation of the
world in such a form that the solution of problems follows
from the facts expressed in the representation. The heuristic
part is the mechanism that, on the basis of the information,
solves the problem and decides what to do."

I shall consider now what is probably the simplest world to
be seriously discussed, that of Popplestone's "blind hand"
problem (internal report, Department of Machine Intelligence,
Edinburgh), with the object of indicating that there is more to
robot reasoning than meets the eye, and expanding a little the
epistemological-heuristic distinction.

A blind, insentient, robot shares with one or more "things"
a world consisting of only two places "here" and "there", and
has available to it the actions "pickup", "letgo" and "go".
"Pickup" is non-deterministic and causes (if the hand is empty
when the action is applied) a "thing" selected at random from
the place where the robot is, to acquire the property "held".
An initial situation called "now" is defined, in which it is
asserted that every thing at "here" (and there is at least one
such) has the property "red". A goal situation is defined as
one in which at least one red thing is at "there".

Invariant Facts and Laws
The kinds of facts which the robot needs to know include

that the robot and anything held by it must be in the same
place, and that something cannot be in both places at once.
Using a prescription ofGreen23 , a formalization of this appar-
ently trivial problem in first order logic might start along the
following lines. (The variables t, p and s are to be interpreted
as standing for objects, places and situations respectively.)

for all t,p,s: held(thing(r),.s and at(thing(t),p,s) implies
at(robot,/>,s),

for all t,p,s: held(thing(r),j) and at(robot,p,s) implies at
(thing(o,.PvS),

for all p,s: at(robot,p,s) implies at (thing(taken(s) ),p,s),
for all t,s: at (t, here,*) implies not at (t, there, s).

The conjunction of these statements describes some of the
physics of this world. The last statement, for example, asserts
that an object cannot be both at "here" and at "there" in one
and the same situation.

The initial situation, "now", is described in like manner:
for all t : at (t, here, now) implies red(o, at(thing (a), here,

now).

The latter statement merely asserts that at least one thing
(represented by the constant a) is at "here" in situation "now".
The function "thing" is a convenience for distinguishing other
objects from the robot, whom we may wish to exclude from
some otherwise universal statements—like one implying that
the robot is "held", for instance.

How can the machine be enabled to reason about the chains
of possible consequences derivable from "now" and so to
construct an action chain leading, to a goal situation? The
goal may be defined, using Green's "answer" predicate24, as:

for all /, s: at(r, there, s) and red(r) implies answer<».
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But how do we handle the actions? The contrast between
epistemological and heuristic criteria becomes very sharp at
this point. Consider two approaches.

One can go the whole way and stick to formal logic, defining
the transition laws of our world under the various actions. For
example, the first of the following three "letgo" axioms trans-
lates freely: "in the situation produced by doing a 'letgo',
nothing is held".

for all t, s: not held (thing(/), do(letgo, s) ),

for all t,p,s: at{t,p,s) implies at(r, p, do(letgo, s) ),

for all t,p,s: not at(t,p,s) implies not at(r,/?,do(letgo,s) ),

and similarly for the other actions.
Now the problem of plan construction is reduced ,to

one of logical deduction, in fact deduction of the state-
ment "answer(do(go(there), do(pickup, do(go(here), do(letgo,
now)))))". This says, in English, that "the goal situation is the
one resulting from doing a "go there" in the situation resulting
from doing a "pickup" in the situation resulting from doing a
"go here" in the situation resulting from doing a "letgo" in
the situation "now" ", and it is clear how this can be re-inter-
preted as an algorithm.

This deduction can in principle be mechanized, but there
are two severe snags. First, the need to incorporate "frame
axioms"24,25 (which spell out all the facts which remain
unchanged after the performance of given actions, as in the
last logic statement above) escalates for nontrivial problems
and renders the automatic deduction process intractable even
in the present toy problem. Second, the logic representation
is not heuristically adequate.

On the other hand, one can go to the other extreme, and
express the whole problem as a computer simulation couched
in a suitable programming language, matching situations with
data structures and actions with procedures. But this approach
encounters difficulties with the epistemological criterion,
for the structure of the problem world can be readily com-
plicated so that it can no longer easily be described by the
use of simple representations of the "state vector" type.
Various attacks are being made on the representation problem
in an attempt to make the best of both worlds, the epistemo-
logical and the heuristic. Some good early suggestions were
made by Popplestone, using essentially the same blind hand
problem, and were reviewed in Nature21 two years ago. Since
then powerful new programming aids, such as the PLAN-
NER28 , QA4 (ref. 29) and CONNIVER30 languages have
come into play. In addition particular mention should be
made of the Stanford Research Institute's study of autonomous
plan formation 14,15, in which many of the matters discussed
above have been under experimental investigation.

The key ideas on which much work centres is that plan con-
struction should be conceived as a search through a space of
states of knowledge to generate a path connecting the initial
knowledge state to one which satisfies the goal definition.
Everything turns on finding ways of representing knowledge
states so that the transformation of one into another can be
neatly computed from the definition of the corresponding
action ("What will I know about the state of affairs after
doing A ?").

Experimental Robotics
The STRIPS system 14,15 at Stanford Research Institute

combines reasoning in first-order predicate calculus with
heuristic search. In the situation depicted in Fig. 2 the robot
must devise a plan for pushing objects around so that one of
the boxes end up in room Rl, suoject to the constraint that at
no time must the wedge be in the sameroom as a box. If the
plan goes wrong, the system must be capable of recovering
from error state and, if possible, "mending" the failed plan
appropriately. Facilities are incorporated whereby successful

Fig. 2 Robot environment for a constraint problem. (Repro-
duced from ref. 31.)

plans are automatically "remembered" and their elements
recombined for use in appropriate future situations 14.

Following simultaneous development of the idea of optical
ranging in Japan32 , Britain (R. J. Popplestone, personal com-
munication) and America 33 , Stanford University's robot
project uses a laser optical ranging system for mapping the
three-dimensional surfaces of "seen" objects. Another branch
of the same project is currently able to assemble an automobile
water pump comprising two pieces, a gasket and six screws
(J. Feldman, personal communication). This is done blind,
using mechanical feedback.

At Edinburgh automatic assembly is also under study.
Programs exist for packing simple objects onto a confined
surface, identifying a limited set of objects by visual appearance,
and solving problems of stacking rings on pegs (D. M., A. P.
Ambler, H. G. Barrow, R. M. Burstall, R. J. Popplestone. and
K. J. Turner, paper to be presented at a Conference on Indus-
trial Robot Technology at the University of Nottingham
next month).

In industrial laboratories, notably in America (for example,
the Charles Stark Draper Laboratory of MIT) and Japan34 ,
automatic assembly studies are multiplying.

Idea of a Theory
I have already mentioned the abstracting of pieces of theory

from performance systems such as those listed above. What
is meant by "theory" in this context ? I have just considered a
fragment of simple robot world theory, and one can, ofcourse,
speak of a piece of chess end-game theory (for example, that
expressed by Tan's program 35 for the two-Kings-and-one-
Pawn end-game) or of the theory of mass spectrometry embed-
ded in the heuristic DENDRAL program. One can even, legiti-
mately, speak of Winograd's program as constituting a
linguistic theory, or at least as containingor implying one. But
these theories are descriptive of specific domains, not of
intelligence itself.

It would be naive to pretend that the search for a meta-
theory is something new, or even that it is anything but old
philosophy in new dress. An early name suggested for what is
now "artificial intelligence" was "epistemological engineering"
(P. M. Woodward, personal communication). The new epis-
temology, however, has a trick which the old philosophers
lacked, namely to express any given theory (of knowledge,
reasoning, abstraction, learning and the like) in a sufficiently
formal style to program and test it on the machine.

Hence there is no longer a meaningful distinction to be
drawn between a theory of some given intelligent function, and
an algorithm for carrying it out (which could in turn be con-
verted into a program for some particular machine) together
with any useful theorems for describing the algorithm's action.
Algorithms, then, are theories, and this has been true for a
long time. But there have been no reasonable mechanisms
available for handling them. Mathematics, on the other hand,
has had the necessary mechanisms for manipulating the formal-
isms which it uses for describing physical systems. Hence
closed-form mathematics has been the "typical" embodiment

*
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of theory in the physical sciences. By contrast, the "typical"
embodiment oftheory incognitive engineering is algorithmic.

What Use is Knowledge ?
The value of storedknowledge to a problem-solving program

again divides into epistemological and heuristic parts. In the
first place sufficient knowledge must be present for solutions
to be in principle deducible. But that is only the start. Heuris-
tically, the value ofknowledge is that it offers ways of avoiding,

or greatly reducing, processes of search. The natural enemy
of the worker in the field of artificial intelligence is the "com-
binatorial explosion", and almost his entire craft is concerned
with ways of combatting it. The following three examples
illustrate the use of stored knowledge to damp off combina-
torial explosions.

First, Tables 1 and 2 show the number of combinatorially

possible ways in picture-processing of labelling various pat-
terns of intersecting lines, contrasted with the number that are
physically possible on the assumption that they arise inretinal
projections of three-dimensional scenes composed of plane
polyhedral bodies, such as that shown in Fig. 3a. The com-
puter program achieves this order ofreduction by the use ofan
appropriate theory. Here I shall review briefly a subset of the
theory, adequate for interpreting line drawings of plane-sur-
faced polyhedra, with trihedral vertices only and without
shadows. In this way the flavour can be imparted of the kind
ofreasoning involved in more complex cases.

Each line in such a drawing can be assigned to one or
another of various possible causes : it corresponds to a convex
edge, a concave edge, or to an edge formed by two surfaces,
only' one of which is visible. A corresponding label can be
attached to each line, as has been done in Fig. 3b using
Huffman's conventions36. The remarkable fact emerges from
Huffman's analysis that only a few of the combinatorially
possible ways of labelling such drawings correspond to physi-
cally possible structures in the outside world: only twelve
distinct configurations of lines around vertices are possible.
A computer program can use the theoretical constraints to

process the picture, by searching through the space of possible
labellings for those which are legal (that is, do not entail that
any line should receive two different labels) under the con-
straints.

Second, Table 3 contrasts the number of topological^
possible molecular graphs corresponding to given empirical

formulae with the number of candidate interpretations remain-
ing after the Heuristic DENDRAL program has applied its
stored theory of chemical stability. The program constructs,
using evidence of various kinds, a "GOODLIST" of sub-
structures which must appear in any structure hypothesized
by the program and a "BADLIST" of substructures which
must not appear. As a simple example, at a given stage
down a search tree might be the partial hypothesis
—CH 2—O—CH 2— and a possible next move for the struc-
ture-generator procedure might be to attach a terminal carbon,
forming —CH2—O—CH2—CH3 . But unless the data con-
tains peaks at 59 and at M-15 this continuation is forbidden.
Again, the structure-generator can be made to handle as a,
"super-atom" a fragment indicated by the mass spectrum.
Additional opportunities to do this arise when the presence of
methyl super-atoms can be inferred from nuclear magnetic
resonance data, when available.

Third, McCarthy's problem of the multilated checker-
board37 is quintessential to the point here discussed. The
squares at opposite corners of an BxB checkerboard are
removed, leaving sixty-two squares. Thirty-one dominoes are
available, each ofsuch a size and shape as to cover exactly two
adjacent squares of the checkerboard. Can all the sixty-two

Fig. 3 a, A complex three-dimensional scene;' b, Huffman
labels for a cube. Plus implies a convex edge, minus implies
concave, and an arrow implies that only one of theedge-forming

surfaces is visible.

Table 1 A Labelling Scheme

■f 1 Convex edge

)

<
1 Obscuring edges—obscuring body lies to

, [ right of arrow's direction

£—

—^
1 Cracks—obscuring body lies to right of

, [ arrow's direction

—f—
—t—

6T —arrows point toshadowed region

7J
8 Concave edge

=1)

«=—
—*—

] Separable concave edges—obscuring body
10[ lies to right of arrow's direction—[ double arrow indicates that three bodies. . j meet along the line

Re; iroduced from ref. 42.

'able 2 Comparison of Number of Combinatorially Possible Labellings
with the Number that are Physically Possible

Approximate number
of combinatorially
possible labellings

Appoximate number
of physically

possible labellings.
V 2,500 80

> 125,000 70

A 125,000 500

v 125,000 500

6xl06

6xl06

10

300

6xl06 100

X
r<

6xl06

6xl06

100

100

3x10" 30

Reproduced from ref. 42.
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Table 3 Comparison of the Number of Topological^ Possible
Molecular Graphs Corresponding to Given Empirical Formulae with
the Number of Candidate Interpretations Remaining after the Heuristic
DENDRAL Program has Applied its Stored Theory of Chemical

Stability

Number Number of
of inferred isomers

isomers A B
Thiol 1-nonyl 405 89*1

n-decyl 989 211 1
n-dodecyl 6,045 1,238 1

Thioether di-n-pentyl 989 12 I
di-n-hexyl 6,045 36 1
di-n-heptyl 38,322 153 1

Alcohol n-tetradecyl 38,322 7,639 1
3-tetradecyl 38,322 1,238 1
n-hexadecyl 151,375 48,865 1

Ether Di-n-octyl 151,375 780 1
bis-2-ethylhexyl 151,375 780 21
di-n-decyl 11,428,365 22,366 1

Amine n-octadecyl 2,156,010 48,865 1
N-methyl-n-octyl-n-nonyl 2,156,010 15,978 1
N,N-dimethyl-n-octadecyl 14,715,813 1,284,792 1

A, Inferred isomers when only mass spectrometry is used; B,
inferred isomers when the number of methyl radicals is known from
nuclear magnetic resonance data. Based on ref. 20.

squares be exactly ccered by some tessellation of the thirty-
one dominoes ?

However sophisticated the search procedure which a heuristic
program might use to attack this problem by trial and error,
the combinatorics of the problem will defeat it. If the reader is
unsure of this, let him mentally enlarge the board to, say,
80x80, or 108 x 108 . But so long as the dimensions of the
board are both of even, or both of odd, length (such boards
are called "even" boards) then the problem stays the same for
any solver armed with certain crucial pieces of knowledge,
namely: that the two squares which are removed from oppo-
site corners of an even board must be of the same colour, and
that each domino must cover exactly one white and one black
square. The problem now falls apart. The mutilated checker-
board cannot be covered.

To discover formal schemes within which suchkey facts can
automatically be mobilized and their relevance exploited in an
immediate and natural fashion is closely bound up with what
was earlier referred to as "the representation problem". A
familiar example is that certain representations of the game of
Nim trivialize the calculation of a winning strategy; but the
program capable of inventing suchrepresentations is yet to be
devised.

Progress Towards an ICS
Two years ago I discussed in Nature21 the possibility of

implementing in software an Integrated Cognitive System
(ICS). The attainment on a laboratory scale of a "working
model", it was suggested, could be used as an indicator of
ultimate feasibility. A working model of an ICS, as a minimal
set ofrequirements, should be able: to form an internal repre-
sentation of its task environment, summarizing the opera-
tionally relevant features; to use the representation to form
plans of action, to be executed in the task environment; to
perform directed perceptual sampling of the environment to
switch execution along conditional branches of the plan; to
recover from error state when execution fails; to cope with
complex and ill-structured environments; to be told new goals
and to work out its own approaches to them; and to use the
record of past failures and successes to revise and extend the
representation inductively.

A computer program which was not able to do most of the
above, however excellent a feat of software technology it
might be, would not count as an artificial intelligence program.
The guidance software for the Apollo on-board computer,
written for NASA by Draper Laboratories (J. Moore, privately

circulated report, Department of Computational Logic, Uni-
versity of Edinburgh) and charged with the task of getting the
spacecraft to the Moon and back, is disqualified on this cri-
terion. On the one hand, it is an acknowledged masterpiece,
and on the other, in common with other and lesser automatic
control systems, it scores a significant mark only for the third
item in the above list.

The on-board computer does not need to plan because hand-
coded routine have been provided for all probable situations—analogous, perhaps, to the elaborate, but essentially reflex,
nervous system of an insect. The reason for regarding the
Apollo on-board system as sub-intelligent is thus concerned
with the nature ofthe internal model which it has of its environ-
ment. More than a quarter of a century ago Craik38 first
called attention to the crucial role in thought and perception of
internal models. The world of the Apollo computer is so
simple and determinate that its behaviour can be completely
characterized by computationally simple equations. These
equations, which comprise the system's "internal model" in
Craik's sense, capture the dynamics of all possible configura-
tions of the objects of its world, and supply all information
needed about their interactions and properties.

But consider the mission: not to go to the Moon and back,
but the much harder one ofgoing down to the tobacconist and
back. By contrast with the space mission, the task environment
is exceedingly complex and "messy" and the unexpected lurks
at every point of the route (the stairs may be swept, unswept,
blocked . . . , the front door may be open, shut, locked . . . ,
the weather may be bright, dull, wet, windy . . . and so on).
Alternatively, and only a little less taxing (at least the environ-
ment does not contain other autonomous beings to worry
about), consider the mission of a Mars Rover vehicle, such as
that already envisagedby NASA39 and by the space section of
the USSR Academy of Sciences (N. Zagoruiko, personal com-
munication). Arising from the fact that it is not possible to
pre-program solutions to all problems which might arise while
exploring an unknown terrain, a specific ten-year programme of
machine intelligence research is regarded as a necessary
preliminary condition for putting such operational vehicles
into commission. Note that if such a vehicle is to handle all
the tasks of autonomous exploration, and assembly and use of
instruments, which will be demanded of it, then it must score
seven out of seven on the criteria posed earlier.

That achievement lies in the future. How do matters stand
today with regard to "working models" ? Each of the seven
capabilities listed can now be found in one or another experi-
mental system, and there are some systems which exhibit many,
or even most, of them. Unfortunately the most interesting
capability of all, central to the phenomenon of intelligence, is
the one which is still the least well understood—namely induc-
tive generalization. Yet significant progress has been made 16,40.

In summary, incomplete systems are becoming commonplace
and complete "working models", at the most primitive level,
now seem not very far off. The likely technological lag before
such systems might be upgraded to near-human intellectual
performance is a topic for separate consideration.

Implications and Forecasting
It would plainly be desirable to find some objective basis for

predicting therate of developmentand social impact ofmachine
intelligence. An objective basis is lacking at present and it is
only possible to record samples of subjective opinion and to
categorize lines of enquiry which more objective studies might
follow. Fig. 4 summarizes some of the results of an opinion
poll taken last year among sixty-seven British and American
computer scientists working in, or close to, the machine
intelligence field.

In answer to a question not shown in Fig. 4, most con-
sidered that attainment of the goals of machine intelligence
would cause human intellectual and cultural processes to be
enhancedrather than to atrophy. Of those replying to a ques-
tion on the risk of ultimate "takeover" of human affairs by
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Fig. 4 Opinion poll on machine intelligence. Estimated number
of years before: .computing system exhibiting intelligence
at adult human level; - - -, significant industrial spin-off;— " — , contributions to brain studies; , contributions

from brain studies to machine intelligence.

intelligent machines, about half regarded it as "negligible",
and most of the remainder as "substantial" with a few voting
for "overwhelming".

A working party recently convened under the auspices of
the Rockefeller Foundation at Villa Serbelloni, Lake Como,
on June 11 to 15, 1972, considered the gradations through
which complex information systems might evolve in the future,
ranging from contemporary industrial control systems, and
"data look-up" retrieval, to autonomous computer networks
developed for controlling urban functions (telephones, electri-
city distribution, sewage, traffic, police, banking, credit systems,
insurance, schools, hospitals, and so on). The backbone of
such systems will develop anyway, by straightforward elabora-
tion of conventional computing technology, including the
integration of the various computational networks into total
systems. It seems likely that such systems will also ultimately
incorporate autonomous planning and decision-taking capabili-
ties, derived as "spin-off" from developments based on artificial
intelligence in, for example, space and oceanographic robotics.
A danger could then arise ofcity dwellers becoming dependent
on systems which could no longer be fully understood or con-
trolled. Counter-measures to such dangers might include \Y~.
introduction of auditing procedures for computer programs,
research on program-understanding programs, and system-
understanding systems generally, and, finally, the advent of
programs to teach the users of intelligent systems.

On the other side of the balance sheet, the working party
took preliminary note of several anticipated benefits. The
mechanization of industrial production has been associated
in the past with the imposition of a deadening uniformity
of design. Automated intelligence in the factory could offer
the possibility of restoring the diversity and the "one off"
capability originally associated with human craftsmanship.
Related to this is the introduction of computer aids for the
artist, composer, writer, architect and mathematician. Even
the ordinary hobbyist might be enabled to perform feats which
would today seem daunting or bizarre—building his own house,
publishing his own writings, for example. The possible effects
on computer-aided education have been stressed by others41 :
advances in this area will be of value not only to the young
but also to older people as a means of acquiring new skills.

The formulation of an outline scheme of topics, and the
compilation of relevant documents, represents an early stage
of a study expected to occupy a number of years. Technical
developments which occur in the intervening period will
doubtless give such studies a firmer basis.
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