Agricultural Price Support

1. Chap 9: Agricultural Price Support
2. Chap 9: Supply Restrictions
3. Chap 9: Tax and Subsidy

1 Agricultural Price Support

In this case, government sets prices higher than the free market level, and buys excess supply (see Figure 1). The buyer’s price is shown on the y-axis in the following graphs. The original consumer surplus equals the area between the demand curve and the line of price \(P_1 \); after the price support, it equals the area between the demand curve and the line of price \(P_2 \), thus

\[
\Delta CS = -(A + B).
\]

The original producer surplus equals the area between the supply curve and the line of price \(P_1 \); after the price support, it equals the area between the supply curve and the line of price \(P_2 \).
curve and the line of price P_2, thus

$$\Delta PS = A + B + D.$$

Government buys quantity $Q_3 - Q_2$ at price P_2; the cost equals the area of the rectangular

$$\Delta G = -(B + D + E).$$

The deadweight loss to the society is

$$DWL = -(B + E).$$

2 Supply Restrictions

Government restricts quantity supplied to be less than Q_1 (see Figure 2). The

![Supply Restriction](image)

Figure 2: Supply Restriction.

The original consumer surplus equals the area between the demand curve and the line of price P_0; after the supply restriction, it equals the area between the demand curve and the line of price P_1, thus

$$\Delta CS = -(A + B).$$

The original producer surplus equals the area between the supply curve and the line of price P_0; after the supply restriction, it equals the area of the trapezoid, with the supply curve, the line of price P_1, the line of quantity Q_1, and the price axis as its sides, thus

$$\Delta PS = A - C.$$
Thus, the deadweight loss is

\[DWL = -(B + C). \]

Example government measures include import quota and tariff, which benefit domestic producers but hurt consumers.

2.1 Zero Quota

S_D is the domestic supply, and D_D is the domestic demand. If no import is allowed, the domestic price is P_0. Without restriction on import, the domestic price would be the same as the world price P_W, which is lower than P_D (see Figure 3). Without import quota restriction, consumer surplus equals the area between the domestic demand curve and the line of price P_W; if the quota is zero, it equals the area between the domestic demand curve and the line of price P_0, thus

\[\Delta CS = -(A + B + C). \]

Without quota restriction, producer surplus equals the area between the domestic supply curve and the line of price P_W; if the quota is zero, it equals the area between the domestic supply curve and the line of price P_0, thus

\[\Delta PS = A. \]

The deadweight loss is

\[DWL = B + C. \]

2.2 Non-Zero Quota

Given the same S_D, D_D, and P_W, now suppose the government sets non-zero quota k. The domestic price P_1 is where the difference between domestic demand
2.3 Import Tariff

Figure 4: Non-Zero Quota.

\((Q_{D1}) \) and domestic supply \((Q_{S1}) \) is \(k \) (see Figure 4). Likewise, the change of consumer surplus

\[
\Delta CS = -(A + B + C + D);
\]

and the change of domestic producer surplus

\[
\Delta PS_D = A.
\]

The net domestic loss equals

\[
-(\Delta CS + \Delta PS) = B + C + D.
\]

The foreign producer surplus increases by excess profits, which equal the area of rectangular \(C \)

\[
\Delta PS_F = C.
\]

The total deadweight loss is

\[
DWL = B + D.
\]

The domestic loss is

\[
\text{Domestic Loss} = B + C + D.
\]

2.3 Import Tariff

Government imposes a tariff \(P_1 - P_W \) on each unit imported (see Figure 5). The change of consumer surplus and domestic producer surplus are
\[\Delta CS = -(A + B + C + D) \]

and

\[\Delta PS_D = A, \]

respectively. Foreign producers gain nothing, that is to say

\[\Delta PS_F = 0, \]

because \(C \) becomes the revenue of government

\[\Delta G = C. \]

The deadweight loss is

\[DWL = B + D, \]

which equals to the domestic loss.

3 Tax and Subsidy

Assume that government imposes a $1 tax on each cigarette unit. Given the market price \(P \), if the tax is paid by

- producers, then buyers pay \(P \) and producers get \(P - 1 \);
- consumers, then buyers pay \(P + 1 \) and producers get \(P \).
Therefore, the price paid by buyers and the price received by producers always have a difference of 1 (see Figure 6). Let \(P_B \) be the buyer’s price and \(P_S \) be the seller’s price.

\[
P_D - P_S = 1.
\]

In figure 6, we put buyer’s price on the y axis. Therefore, with the tax, the supply curve moves from \(S \) to \(S' \). The equilibrium buyer’s price is \(P_D \), and the equilibrium seller’s price is \(P_S \). Thus, the consumer surplus and producer surplus both decrease:

\[
\Delta CS = -(A + B),
\]

\[
\Delta PS = -(C + D).
\]

Government revenue

\[
\Delta G = A + C.
\]

So, the deadweight loss is

\[
DWL = B + D.
\]