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Abstract Solar Radiation Management (SRM) has two characteristics that make it
useful for managing climate risk: it is quick and it is cheap. SRM cannot, however,
perfectly offset CO2-driven climate change, and its use introduces novel climate and
environmental risks. We introduce SRM in a simple economic model of climate
change that is designed to explore the interaction between uncertainty in the
climate’s response to CO2 and the risks of SRM in the face of carbon-cycle inertia.
The fact that SRM can be implemented quickly, reducing the effects of inertia,
makes it a valuable tool to manage climate risks even if it is relatively ineffective
at compensating for CO2-driven climate change or if its costs are large compared
to traditional abatement strategies. Uncertainty about SRM is high, and decision
makers must decide whether or not to commit to research that might reduce this
uncertainty. We find that even modest reductions in uncertainty about the side-
effects of SRM can reduce the overall costs of climate change in the order of 10%.

1 Introduction

It appears to be technically feasible to engineer an increase in albedo, a planetary
brightening, as a means to offset the warming caused by carbon dioxide (CO2) and
other greenhouse gases through Solar Radiation Management (SRM) (Keith and
Dowlatabadi 1992; Keith 2000; Crutzen 2006; Shepherd et al. 2009). However, the
cooling produced by SRM does not exactly compensate for the warming caused by
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CO2-driven climate change; and any particular method of SRM will no doubt entail
other risks and side-effects (e.g. Bala et al. 2008; Ricke et al. 2010). Nevertheless,
SRM may be a useful tool to mange climate risks (Wigley 2006). In this paper we ask
how optimal policy is affected by risk regarding the side-effects of SRM, in the face
of uncertainty about the magnitude of the damages caused by CO2-driven climate
change.

To answer this question we construct a simple model that captures the following
stylized facts about climate change and SRM:

1. The carbon-climate system has inertia. There is a lag between the response of
the climate system and the anthropogenic carbon emissions that cause climate
change. The inertia of the carbon-climate system makes it impossible to quickly
reduce climate risk by reducing emissions, as it is expected that 40% of the peak
concentration of CO2 will remain in the atmosphere 1000 years after the peak is
reached (Solomon et al. 2009).

2. Climate change damages are uncertain. The amount of climate change resulting
from a given emissions trajectory is uncertain, as are the resulting economic
(or other) damages. Moreover, this uncertainty is irreducible over a timescale
of decades during which we will make near-term decisions about emissions
abatement (Morgan and Keith 1995; Zickfeld et al. 2010).

3. SRM is fast. A reduction in the incoming radiation has relatively instantaneous
effects on global temperature (Caldeira and Matthews 2007; Robock et al. 2008).
Nature gives an example of how quickly temperature responds to changes in ra-
diative forcing: after Mount Pinatubo’s explosion around 20TgS were deposited
in the stratosphere, global surface temperatures cooled about 0.5◦C over the
following year (Soden et al. 2002).

4. SRM is inexpensive. At this stage, little is known about the technical costs of
SRM, but some preliminary studies have suggested that SRM could offset the
increase in global average temperature due to CO2 at a cost 10 to 1000 times
lower than achieving the same outcome by cutting emissions (McClellan et al.
2010; Robock et al. 2009; Shepherd et al. 2009).

5. SRM cannot eliminate carbon-climate risk. SRM technologies can intervene
to restore the surface temperature by reducing the incoming solar radiation.
This intervention, however, cannot eliminate all the damages caused by climate
change. In particular, the temperature compensation has a different regional
distribution, that leaves the poles under compensated while the equator is over
compensated (Caldeira and Matthews 2007). Moreover, the accumulation of
greenhouse gases has direct implications on the precipitation patterns (Allen and
Ingram 2002); and, in the case of CO2, ocean acidification (Caldeira and Wickett
2003, 2005).

6. SRM introduces damages. There is an increase in the risks of destruction of
stratospheric ozone due to SRM implementation (Solomon 1996, 1999). More-
over, sulfuric acid deposition may create health and regional problems (Crutzen
2006); although recent literature suggests these effects are small (Kravitz et al.
2009). Also, recent numerical simulations show that SRM will affect precipitation
patterns and volumes, possibly causing droughts in large regions of the planet
(e.g. Ricke et al. 2010).
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Our goal is to explore the trade-offs between the advantages and disadvantages of
SRM in a cost minimizing optimal-decision framework that we intend to be as simple
as possible while still capturing all of these stylized facts. The advantages of SRM to
manage climate risks are twofold. First, it is inexpensive compared to abatement, and
second it allows rapid action avoiding some of the inertia of the carbon system. The
corresponding disadvantages of SRM are that it imperfectly compensates for CO2

driven warming and it may introduce new environmental risks.
In our model, the objective of the decision-maker is to minimize the expected

total costs of managing climate change. The costs of climate change are the sum of
the costs of abatement and SRM activities plus any economic damages. The costs
of abatement and SRM are increasing and convex functions of their arguments,
while economic damages are the sum of the damages arising from greenhouse gas
concentrations—such as temperature changes and ocean acidification—and those
arising from the side-effects of SRM. The damages from temperature are a quadratic
function of the change in global surface temperature; which, in turn, is proportional
to radiative forcing. The damages from ocean acidification arise due to the increase
of CO2 concentrations in the oceans; which, in turn, affects marine life and the
economic activities associated with it, i.e. fishing and tourism. The damages arising
from the side-effects of SRM are assumed to be a quadratic function of the total level
of SRM.

As a simple way to capture climate-carbon inertia we use a two-stage decision
framework in which the abatement decisions are made in the first period and SRM
decisions are made in the second. In between periods, the decision maker learns the
true sensitivity of the climate (Fig. 1). Because temperature depends on cumulative
emissions, we assume emissions are irreversible (Matthews et al. 2009) and in that
sense, only the level of abatement implemented before learning about the sensitivity
of the climate system can help reduce damages caused by temperature changes
and ocean acidification. The climate system, however, responds quickly to changes
in radiative forcing in the form of SRM. This quickness of response allows SRM
to reduce temperature damages after learning about the sensitivity of the climate;
hence, eliminating the inertia associated with other forms of climate intervention
and abatement. Damages take place in the second period, after SRM decisions are
made.

The approach in this paper has proven to be useful for the economic analysis of
climate change and we expect it to be equally insightful for the economic analysis of
SRM [see Weitzman (2009) for a recent application of a two period model to analyze
climate change policy, and Goulder and Mathai (2000) for an example of the use
of a cost minimizing framework with increasing and convex costs to analyze climate
policy]. Five caveats, however, are important for our analysis:

• The optimal policy assumes a centralized decision maker. In practice, many
countries will decide how to implement SRM amongst themselves. The strategic
interaction among countries may lead to under or over provision of either SRM
or abatement (see Millar-Ball 2012; Moreno-Cruz 2011).

• A centralized decision maker minimizes changes in global mean temperature
and other damages at a global scale. By making this assumption, we eliminate all
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Fig. 1 Timing of decisions and information in the two-period model. The top schematic shows the
timing when SRM is used as an insurance in Section 3. The bottom three schematics show the
scenarios in Section 4. They vary depending on whether decisions are made before or after learning
about the SRM damages. Decisions are represented by rectangles, while uncertain outcomes are
represented by circles. SRM uncertainty is represented with blue circles. Learning is represented with
red circles. Payoffs are represented by hexagons. The first schematic shows the timing of decisions
when there is no learning (NL scenario). The second schematic describes the scenario when learning
takes place before SRM decisions are made, but after abatement decisions are made (2L scenario).
The third schematic describes the scenario when learning takes place before abatement and SRM
decisions are made (1L scenario)

considerations to regional inequalities that may arise from the implementation
of SRM [see Moreno-Cruz et al. (2012) and Ricke et al. (2010) for a detailed
treatment of the inequalities introduced by SRM]. Nonetheless, understanding
the optimal policy is important as it serves as a benchmark with which other
policies may be compared.

• Use of a static two-period model limits its application in two important aspects.
First, it cannot be used to analyze time dependent optimal policies where SRM
is introduced incrementally. Instead we concentrate on SRM as a tool to deal
with low-probability high-consequence impacts that are colloquially referred to
as “climate emergencies”. Second, the model cannot address damages due to
rapid temperature changes associated to the sudden interruption of an SRM
program.

• By considering damages only in terms of reduction in economic output we are
neglecting aspects of the problem that do not easily fit this framework such as
non-monetary environmental values. This assumption, of course, neglects the
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ethical issues associated with the direct manipulation of the climate implied by
SRM. We believe these ethical concerns are crucial for the analysis of SRM as
are the issues of uncertainty and inertia that we treat here.

The rest of the paper proceeds as follows. In Section 2 we introduce and calibrate
the model. In Section 3 we introduce uncertainty on the climate system and analyze
the role of SRM in dealing with high-impact, low-probability outcomes. In Section 4,
we deal with the uncertainty attached to the damages from SRM and analyze the
value of reducing this uncertainty. We draw conclusions in Section 5.

2 A general description of the model

2.1 Temperature, abatement and SRM

When the concentration of greenhouse gases increases in the atmosphere it alters
the balance between incoming solar radiation and outgoing terrestrial radiation,
resulting in an increase in the mean global temperature of Earth. Radiative forcing
describes how the radiation balance is altered by human activity. Radiative forcing,
R, is a function of the concentration of CO2 in the atmosphere, S, relative to the
preindustrial level, S0:

R = β ln
(
S/S0

)
(1)

where, according to the IPCC (2007), β = 5.35 watts-per-meter-squared [Wm−2].
Abatement, which we denote by A, refers to measures that reduce the concentration
level of CO2 in the atmosphere. In particular, assume that S = SBAU − A, where
SBAU is the business as usual concentration of CO2 in the atmosphere measured in
parts per million [ppm].

Changes in mean global temperature, �T—measured in ◦C—are defined as a
linear function of radiative forcing, R:

�T = λR (2)

where λ is the climate sensitivity parameter with units ◦C m2/W.
When SRM is introduced in the model, the relation between CO2 concentrations

and temperature is altered. We measure SRM, G, in terms of its radiative forcing
potential and, since temperature change is a linear function of radiative forcing, Eq. 2
can be written as:

�T(A, G) = λ

(
β Ln

(
SBAU − A

S0

)
− G

)
(3)

2.2 Economic damages

We represent total climate damages as the sum of impacts from three different sources:
temperature, SRM and uncompensated CO2 damages (e.g. ocean acidification). Fol-
lowing Nordhaus (2008), we assume temperature damages are quadratic. Following
Brander et al. (2009), damages from ocean acidification are also quadratic on the
concentration of CO2. We assume that SRM damages are also a quadratic function
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of the total level of SRM.1 To be able to compare the different sources of impacts,
we express damages in terms of reductions in economic output. Thus, total damages
are given by:

D(A, G) = ηS(SBAU − A)2 + ηTλ2 (�T(A, G))2 + ηGG2 (4)

where ηS(SBAU − A)2 are the damages caused by ocean acidification and other
uncompensated damages from CO2, ηTλ2 (�T(A, G))2 are damages caused by
temperature changes, and ηGG2 are the damages caused by the side-effects of SRM.
In Eq. 4, when A equals SBAU and G equals zero, damages are zero. However, when
A is less that SBAU , damages are always positive, showing the inability of SRM to
perfectly compensate for greenhouse gas driven climate change (see bottom panel in
Fig. 2). That is, although technically SRM can reduce temperature changes to zero,
it may do so at the expense of other economic damages.

2.3 Implementation costs

We assume that abatement costs are increasing and convex. In particular, following
Nordhaus (2008), we have:

�(A) = KA Aα (5)

where KA has units [$/ppm] and α = 2.8.
Following Keith and Dowlatabadi (1992) we assume that SRM costs are linear

and given by

�(G) = KGG (6)

where KG has units [$/(Wm−2)].
Total social costs are the sum of the implementation costs, given by Eqs. 5 and 6,

and the economic damages given by Eq. 4. The optimal policy consist of the level of
abatement and the level of SRM that minimize total social costs.

2.4 Calibration

We use the year 2100 as our planning horizon, a common target in the analysis
of climate change policy.2 To calibrate our model, we use the projected costs and
damages in 2100 reported by the DICE-2007 model (Dynamic Integrated Model of
Climate and the Economy) (Nordhaus 2008). We complete the information needed
for our calibration using data from the IPCC (2007) and publications related to
the costs of SRM. The information given below is, unless otherwise noted, from
Nordhaus (2008). The assumptions and calibrated values are summarized in Table 1.

We calibrate costs and damages as percentages of global GDP, when we report
dollar values we assume global GDP to be around $50 trillion per year (World Bank,
World Development Indicators). Although not relevant for our study, incorporating

1There is not evidence of how steep the damages from SRM are. By choosing quadratic damages we
are assuming they have the same weight as other climate related damages.
2As suggested by the reviewers, we analyzed the results for different target years, 50 years from now
and 150 years. All the qualitative results are the same.
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Fig. 2 Optimal climate policy. The horizontal axis is the impacts of SRM expressed as a fraction
of the business-as-usual climate damages. For example, when ηG = 0.5DT , the impacts of SRM are
equivalent to 50% of the damages from CO2-driven climate change. The vertical axis is in units of
radiative forcing (Wm−2). The top panel shows the optimal policy measured in terms of radiative
forcing potential (Wm−2). The middle panel presents the temperature change measured in ◦C. The
solid line shows the results with SRM, and the dashed line shows the results without SRM. The bottom
panel shows the expected costs of implementing the optimal policy as a fraction of global GDP. The
orange lines show the expected total costs with only temperature damages. The difference between
the solid black line and the solid orange line is the fraction of costs that cannot be compensated using
SRM
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Table 1 Calibration of model

Assumptions

Climate parameters Definitions

SBAU = 685 ppm Business as usual concentration of CO2

S0 = 270 ppm. Preindustrial concentration of CO2

RBAU = 4.98 W/m2 Business as usual radiative forcing
TBAU = 4.28◦C Business as usual temperature change

Calibration

Economic parameters Notes

KA = 6.8 × 10−7 Reducing temperature change in 2100 by 1◦C from BAU
[%GDP/ppm] costs 1% of global GDP and reducing temperatures by 1◦C

relative to BAU requires a CO2 reduction of 134 ppm.
KG = 5.7 × 10−4 We assume the costs of SRM are 1% of the costs of abatement

[%GDP/(Wm−2)] (McClellan et al. 2010; Shepherd et al. 2009) and
performed sensitivity analysis for values between
10% and 100% of the costs of abatement.

ηT = 0.32 [%GDP/◦C] If no action to deal with climate change is taken, around 3%
of global GDP will be lost in 2100, or
DT ≡ 0.03GDP = 1

2 ηT T2
BAU

ηS = 1.3 × 10−6 Ocean acidification damages add 10% to the total impacts
[%GDP/ppm] from climate change (Brander et al. 2009), or

0.1DT = 1
2 ηS(SBAU − S0)

2

discounting is simple. For example if we assume a discount rate of 1%, the yearly
GDP value would be equivalent to $33 trillion. If we assume a discount rate of
7%, yearly GDP would be $7 trillion. Economic growth is equally easy to introduce.
Introducing economic growth at a rate of 2.5% will yield a yearly GDP value of $200
trillion. Considering a discount rate close to the rate of economic growth would leave
the yearly value of GDP at around $50 trillion.

There is insufficient information to allow us to quantify the risks of SRM, ηG, with
any confidence, so we treat them parametrically. In Section 3 we analyze optimal
policy as a function of ηG and in Section 4 we introduce uncertainty and learning
on ηG.

3 Climate sensitivity uncertainty: SRM as insurance

In this section we analyze the role of SRM in dealing with the uncertainty sur-
rounding the climate’s response to changes in the atmospheric concentration of CO2.
Specifically, we made the climate sensitivity parameter, λ, random. We define the
random variable λ̃, to introduce the uncertainty of the response of the climate system.
λ̃ follows a binomial distribution of the form:

λ̃ =
{

λH = 2.3 with probability p = 0.1
λL = 0.7 with probability 1 − p = 0.9.

(7)
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Notice that the mean of this distribution is 0.86, which is consistent with recent
estimates (IPCC 2007).3 We choose this distribution of λ̃ to capture the idea of
low probability-high impact events that are characteristic of fat-tail distributions
commonly associated to climate sensitivity (Roe and Baker 2007; Weitzman 2009).
This is of course a simple approximation that allows us to introduce risk in the climate
system without increasing the complexity of the model. The qualitative results of our
paper would remain the same if we introduce a continuous distribution with fat-tails.

As we mentioned in the introduction, to capture climate-carbon inertia, decisions
about abatement and SRM are made sequentially. Abatement decisions are made
in the first period and SRM decisions are made in the second period. In between
periods, the true climate sensitivity is revealed. Here SRM decisions are made under
perfect information, but we will relax this assumption in Section 4 (see Fig. 1).

We introduce the imperfection of SRM parametrically; that is, the optimal level of
abatement and the optimal level of SRM are a function of the magnitude of the side
effects of SRM, ηG. We allow damages from SRM to be higher than those induced by
CO2-driven climate change, so ηG ∈ [0, 1.5DT ] where DT = $11.4 × 1012/(Wm−2).
That is, when ηG = DT , reducing temperature changes to zero using only SRM
may create damages just as large as if temperature were equal to its business as
usual level. By setting the upper limit at ηG = 1.5DT we try to highlight the role
of SRM as an insurance. This limit, however, can be too high. The most commonly
discussed direct impact of SRM (using stratospheric aerosols) is ozone loss. Estimates
of the economic losses due to ozone depletion are in the order of US$1.1 trillion
between 1987 and 2060. That is equivalent to 0.03% of global GDP, or (1/100)DT

(Environment Canada 1997; Sunstein 2007).
The top panel in Fig. 2 shows the optimal policy. As expected, SRM is a decreasing

function of ηG while abatement is increasing in ηG. Thus, abatement and SRM
are technical substitutes: if SRM is costly, then it is optimal to implement more
abatement. Also, the optimal level of SRM is always higher in the high-sensitivity
outcome (λ = λH) compared to the low-sensitivity outcome (λ = λL). This is the
result of the assumption that SRM can be chosen after learning about the climate
sensitivity of the system. Moreover, in the case of an unlucky outcome, SRM is used
more than abatement, even if damages from SRM are higher than DT .

The middle panel in Fig. 2 shows temperature with and without SRM. We can
see that temperature change increases when the damages from SRM increase.
Temperature increases because there is a reduction in the level of SRM that is less
than compensated by the increase in abatement levels; which results from the fact
that abatement costs are increasing and convex.

The bottom panel in Fig. 2 shows the total costs of managing climate change as a
function of the marginal damages from SRM, ηG. As expected, total costs are higher
when damages from SRM become larger. If SRM was harmless, that is ηG = 0, the
savings relative to the case of no SRM would be around 2% GDP or $1 trillion per

3The probability distribution described in Eq. 7, albeit quite simple, captures the main characteristics
of the climate distribution described by the IPCC. According to the IPCC (2007) “climate sensitivity
is likely to be in a range of 2–4.5◦C with a best estimate of about 3◦C,” while “values substantially
higher than 4.5◦C cannot be excluded.” Using the simplified expression for radiative forcing obtained
from the IPCC Third Assessment Report, we find that with probability 0.9 climate sensitivity will be
2.6◦C and with probability 0.1 climate sensitivity will be 8.5◦C. On average, climate sensitivity is
3.2◦C.
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year, which is equivalent to a reduction in the expected costs of climate change close
to 85%. If on the other hand ηG = DT , the cost reduction due to the introduction of
SRM is around 1.1%GDP or $550 billion per year, which is equivalent to a reduction
in the expected costs of climate change close to 50%. To illustrate the role that the
uncompensated damages from CO2 play in the model, we set ηS = 0 (orange lines in
lower panel of Fig. 2). The difference between the black and orange lines are due to
costs such as ocean acidification that cannot be compensated by SRM even if there
are no damages from SRM, (ηG = 0).

We find that it is still optimal to implement high levels of SRM even if the
marginal damages from SRM are higher than those of climate change (ηG = 1.5DT).
This counter-intuitive result arises because SRM can be implemented after the
uncertainty about climate sensitivity is resolved. The signal advantage of SRM is its
quick response: even if damages from SRM are substantially high, it is still valuable
to have SRM available, as a complement to abatement measures, in case the climate
sensitivity is high. Consider the counterfactual: without SRM it is difficult to bound
climate damages in the face of climate sensitivity uncertainty and inertia as argued
by Roe and Baker (2007) and Weitzman (2009).

4 Uncertain SRM: assessing the value of learning about the side-effects

In this section we explicitly introduce uncertainty about the damages from SRM.
We examine the effect that reducing this uncertainty has on the optimal policy and
the total costs of addressing climate change. Uncertainty about the risk and the
effectiveness of SRM may be reduced by researching and engaging in the small
scale implementation of SRM. We describe the reduction of uncertainty–achieved
by research or otherwise—as learning.

The implications of learning for the optimal policy depends strongly on when
learning occurs in relation to decisions. We treat three scenarios (Fig. 1). The
first scenario assumes no learning (NL), or equivalently that learning occurs after
abatement and SRM are chosen. In the second we assume that learning occurs before
SRM decisions are made, but after abatement is chosen; we refer to this as second
stage learning—2L. In the third scenario, we assume that learning occurs before
abatement and SRM decisions are made; we refer to this as first stage learning—1L.

To introduce risk associated with SRM, we treat the damages due to SRM, ηG, as
a random variable η̃G that follows the distribution:

η̃G =
{

ηH
G = DT with probability q = 0.5
ηL

G = 0 with probability 1 − q = 0.5.
(8)

which has an expected value of 0.5DT . When q = 0.5, we have no information
regarding whether damages from SRM are larger or smaller than those of climate
change. In this case, and due to the linearity of the model imposed by our assumption
of quadratic damages, the optimal policy is equal to the case of no uncertainty
when ηG = 0.5DT . This is also true for other probability distributions that preserve
the mean of the original distribution. The linearity of the model with respect
to the choice of SRM implies that the decision maker is risk neutral. This very
important characteristic allows us to concentrate on the value of learning that reduces
uncertainty (Baker 2006).
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We assume that learning increases the spread of the original distribution by
skewing the probability towards one of the two outcomes. Learning is equally likely
to show that the damages from SRM are equal to the damages from climate change,
ηG = DT , or to show they are zero, ηG = 0. That is, learning does not change the
expected value of ηG. In the case where, with probability 0.5, learning reveals that
the impacts are more likely to be worse than expected, the distribution of η̃G takes
the form:

η̃G =
{

ηH
G = DT with probability qH = 0.5 + M
ηL

G = 0 with probability 1 − qH = 0.5 − M.
(9)

where M ∈ [0, 0.5] describes the amount of learning that occurs. On the other hand,
if learning reveals that low impacts from SRM are more likely, then the distribution
of η̃G takes the form:

η̃G =
{

ηH
G = DT with probability qL = 0.5 − M
ηL

G = 0 with probability 1 − qL = 0.5 + M.
(10)

We present our analysis as a function of M, the amount of learning that occurs.
When M = 0 no learning has occurred. Whereas when M = 0.5, learning has fully
eliminated uncertainty.

Figure 3 shows the effects of learning on the optimal policy (top panel), the
expected costs of climate change (middle panel), and the net savings or expected
value of information (bottom panel), as functions of the amount of learning, M. First
stage learning (1L) is preferred to second stage learning (2L) for two related reasons.
First, it allows better decisions in terms of SRM: SRM is lower when learning reveals
high SRM damages and SRM is higher when learning reveals low SRM damages.
This tendency is accentuated when learning is larger (M → 0.5). Second, the value
of learning is an increasing function of the amount of learning and it is higher under
first stage learning (1L).

The top panel in Fig. 3 also shows that the expected level of abatement does not
change significantly with early (1L) or late (2L) learning compared to the no learning
(NL) scenario. This suggest that, at least for the optimal policy, learning about SRM
do not affect the expected value of abatement. Of course, the realized—as opposed
to expected—value of abatement does strongly depend on the outcome of learning.

5 Conclusions

We explore a simple model in which a decision maker chooses the level of emissions
abatement and SRM that minimizes the costs of climate change in the face of
uncertainty about the impacts of both emissions and SRM. We draw two main
conclusions. First, imperfect SRM is an effective means to manage the uncertainty
in the climate response because it can be implemented quickly after this uncertainty
is resolved, providing a tool to manage the inertia in the carbon-climate decision
problem. Without SRM, the existence of high-consequence low-probability climate
impacts, combined with the irreversibility of emissions, may force very high levels
of abatement and hence high costs. In our model, we find that SRM is used in the
case of an unlucky (high-impact) outcome even if the damages from SRM exceed
the expected damages from climate change. Under the same assumption about
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the damages from SRM, SRM is substantially reduced when climate impacts are
relatively low.

Second, we find that learning about SRM—that is the value of information
associated with reducing the uncertainty about the side-effects of SRM—can reduce
the overall costs of climate change in the order of 10%, depending on the amount of
learning. Suppose learning about SRM reduced the expected cost of climate change
by 5%. We can compare these savings, equivalent to 0.05% of world GDP, with
the current spending on SRM research which is less than $10 million per year, or
0.00002% of GDP; though we cannot, of course, conclude that learning will be
proportional to spending since we don’t know how effective this research will be in
reducing uncertainty about SRM. Moreover, this specific numerical result depends
on the calibration of the model and on the assumptions about the prior probability
distribution over the side-effects of SRM.

The model is a highly simplified representation of the problem and its applicability
is limited by the caveats presented in the introduction to this paper. Also, the model
is afflicted by the same constraints attached to any model of climate policy that
supposes a single decision maker; namely, no strategic interaction, no asymmetries
and therefore, no distributional issues. We have used, however, a calibration of
climate damages and abatement that is widely used and is representative of results
derived in many complex models. Hence, the limitations of the model likely do not
affect its main result; that is, SRM is valuable for managing climate risk, not because
of its low cost, but because it can be implemented quickly if we discover that climate
impacts are high, a “climate emergency.”
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